
Measurement Guide and Programming
Examples

Agilent Technologies PSA Series
Spectrum Analyzers

This guide documents firmware revision A.03.xx
This manual provides documentation for the following instruments:

E4440A (3 Hz – 26.5 GHz)
E4443A (3 Hz – 6.7 GHz)
E4445A (3 Hz – 13.2 GHz)
E4446A (3 Hz – 44.5 GHz)
E4448A (3 Hz – 51.0 GHz)
Manufacturing Part Number: E4440-90138
Supersedes: E4440-90063

Printed in USA

October 2003

© Copyright 2001-2003 Agilent Technologies

The information contained in this document is subject to change
without notice.

Agilent Technologies makes no warranty of any kind with regard to this
material, including but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. Agilent
Technologies shall not be liable for errors contained herein or for
incidental or consequential damages in connection with the furnishing,
performance, or use of this material.

Where to Find the Latest Information
Documentation is updated periodically. For the latest information about
Agilent PSA spectrum analyzers, including firmware upgrades and
application information, see: http://www.agilent.com/find/psa.
2

Contents
Table o

f C
o

nten
ts
1. The Basics

Using Files . 7
Creating a Directory (or sub-directory) . 7
Deleting Files . 8
Loading a File . 10
Renaming a File . 10
Copying a File . 11

2. Comparing Two Signals: Frequency and Amplitude
Comparing Signals on the Same Screen . 16

Signals with Constant Levels (using Marker Delta). 16
Signals with Varying Levels (using Delta Pair) . 18

Comparing Signals not on the Same Screen. 20

3. Measuring a Low−Level Signal
Reducing Input Attenuation . 23
Decreasing the Resolution Bandwidth . 25
Using the Average Detector and Increased Sweep Time . 26
Trace Averaging . 27

4. Resolving Signals
Separating Equal-Amplitude Signals . 32
Finding a Small Signal Hidden by a Larger Signal . 34

5. Tracking a Drifting Signal
Tracking a Signal . 39
Measuring a Source’s Drift . 41

6. Making Distortion Measurements
Identifying Distortion from the Analyzer . 45

Identifying Harmonic Distortion Products . 45
Measuring the Analyzer’s Third-Order Intermodulation Distortion 47

Measuring Harmonics and Harmonic Distortion . 49

7. Measuring Noise Signals
Measuring Noise at a Single Frequency . 55
Measuring Signal-to-Noise Levels. 57
Measuring Total Noise Power . 58

8. Measuring the Power of Digital Signals
Making Power Measurements on Burst Signals . 63
Making Statistical Power Measurements (CCDF) . 67
Making Measurements of Adjacent Channel Power (ACP) . 70
Making Measurements of Multi-Carrier Power (MCP) . 74

9. Using External Millimeter Mixers (Option AYZ)
Using Unpreselected Millimeter-wave Mixers . 79
 3

Contents
Ta

bl
e

o
f

C
o

n
te

n
ts
Entering Conversion-Loss Correction Data . 81
Setting Mixer Bias . 82

Using Preselected Millimeter-Wave Mixers . 83
Frequency Tracking Alignment . 83
Making a Measurement . 85

10. Programming Examples
Examples Included: . 88

About These Examples. 88
Finding Additional Examples and More Information . 89

Using Marker Peak Search . 90
Example: . 90

Saving and Recalling Instrument State Data . 93
Example: . 93

Making an ACPR Measurement in cdmaOne . 97
Example: . 97

Performing Alignments and Getting Pass/Fail Results. 100
Example: . 100

Saving Binary Trace Data. 103
Example: . 103

Making a Power Calibration for a GSM Mobile Handset . 107
Example: . 107

Using the CALCulate:DATA:COMPress? RMS Command . 114
Example: . 114

Using C Over Socket LAN (UNIX) . 120
Example: . 120

Using C Over Socket LAN (Windows NT) . 140
Example: . 140

Using Java Programming Over Socket LAN . 143
Example: . 143

Using the VXI Plug-N-Play Driver in LabVIEW® . 152
Example: . 152

Using LabVIEW® 6 to Make an EDGE GSM Measurement . 153
Example: . 153

Using Visual Basic® 6 to Capture a Screen Image . 156
Using Visual Basic® 6 to Transfer Binary Trace Data . 160
Using Visual Basic® .NET with the IVI-Com Driver . 165
4

T
h

e B
asics
1 The Basics
5

The Basics
T

h
e

B
as

ic
s

Assumption You know the basics of spectrum analyzer operation, and the location
and function of front and rear panel keys and connectors. If not, refer to
the Getting Started guide.

NOTE In this manual, preset means factory preset.

This chapter contains basic information about using the analyzer.

• “Using Files” on page 7

For detailed information on analyzer functions, refer to the Reference
guide.
6 Chapter 1

The Basics
Using Files

T
h

e B
asics
Using Files
This section provides information on how to work with files.

Assumption The information in this section is provided with the assumption that
you know how to save a file, and how to locate and view catalogs and
files. If you do not, refer to the Getting Started Guide for details.

In this section, you will find the information on the following:

• “Creating a Directory (or sub-directory)”

• “Deleting Files” on page 8

• “Loading a File” on page 10

• “Renaming a File” on page 10

• “Copying a File” on page 11

Creating a Directory (or sub-directory)

You can add a directory or sub-directory to either the A: floppy disk or
the internal C: drive.

1. Open the Create Directories menu: press File, More, Create Dir.

2. Navigate through the file system until the Path: field displays the
desired directory.

3. Press Name and use the Alpha Editor to enter the desired name for
the new directory. To terminate the entry, press the Enter front panel
key.

4. To create the directory, press Create Dir Now. Once the directory is
created, the status bar displays:
Directory <path><name> created
Chapter 1 7

The Basics
Using Files

T
h

e
B

as
ic

s

Deleting Files

You can delete individual files from any directory, as described in the
following procedure; you can also delete all files and directories from a
floppy disk at one time (see page 9).

Deleting One File

1. If you are deleting a file from a floppy disk, ensure that the disk is
not write protected, then place the disk in the analyzer’s floppy
drive.

2. Open the Delete menu: press File, Delete.

3. Select the type of file you want to delete: press Type, then select the
type you want from the Type directory.

4. Select the drive and directory that contains the file you wish to
delete (the currently selected location appears in the Path: field):

Press Dir Select, highlight the desired directory and press Dir Select
again. Continue until you have located the desired directory.

NOTE If you are not familiar with how to move among directories and locate
files, refer to the Getting Started guide for details.

5. Highlight the file you want to delete.

6. Press Delete Now. The pop up message Deleting file appears on
the display during the operation. When complete, the status bar
displays the message: <path><filename> file deleted., and the file
no longer appears in the directory.
8 Chapter 1

The Basics
Using Files

T
h

e B
asics
Deleting All Files and Directories from a Floppy Disk

Use the following steps to delete all previously stored data from a
pre-formatted floppy disk.

1. Ensure that the disk is not write protected, then place it in the
analyzer’s floppy drive (A:\).

2. Press File, More, Delete All. The directory information box is active
(highlighted), and displays the floppy disk volume ([-A-]).

The files on the disk are not displayed at this point. You must use
File, Catalog to see the files.

3. Press Delete All Now. The following message appears in the display
window:
WARNING: You are about to destroy ALL data on Volume A:.
Press Delete all again to proceed or any other key to
abort.

To abort the process, press any key other than Delete All Now.

4. To delete all files and directories, press Delete All Now a second time.

The message Delete All appears in the display window.

5. After all files and directories are removed, the following message
appears in the status line: Volume A: delete complete. (If the disk
is write-protected, the files will not be deleted even though it looks
like it does.)
Chapter 1 9

The Basics
Using Files

T
h

e
B

as
ic

s

Loading a File

1. Reset the analyzer: press Preset, Factory Preset (if present).

2. Open the Load menu: press File, Load.

3. From the Load menu, select the type of file you want to load.

NOTE Not all file types can be loaded back into the analyzer: Screen files and
CSV (comma separated value) cannot be loaded. Screen and CSV files
are designed for use with a PC.

4. Select the directory where your file is located.

5. Select (highlight) the file you want to load into the analyzer.

6. For a state file, skip this step.

For a trace file, select the trace into which you wish to load the file.
For example, Destination, Trace 2.

7. Press Load Now to load the specified file. The status bar reads:
<path><file> file loaded.

Key Points
when Loading
Trace Files

• Because the state of the analyzer is saved along with the trace, when
the trace is loaded, all of the settings and annotations are restored to
the values displayed when the trace was originally stored.

• The trace is loaded in View mode so that it does not update; the data
remains on screen for printing, analysis, and so on.

Renaming a File

1. Open the Rename menu: press File, Rename.

2. Open the Type menu: press Type.

3. From the Type menu, select the type of file you want to rename.

4. Select the drive and directory where the file is located.

5. Select the file you want to rename.

6. Open the Alpha Editor menu: press Name.

7. Use the editor to rename the file (the Name: field is limited to eight
characters), and press the Enter front panel key to terminate the
entry.

8. Press Rename Now: the file is renamed and visible within the
directory displayed on the analyzer. The status line displays the
message:
<path><old filename> file renamed to <path><new filename>
10 Chapter 1

The Basics
Using Files

T
h

e B
asics
Copying a File

1. Open the Copy menu: press File, Copy.

This menu displays two directory boxes, labeled From: and To:
directly above the boxes. See Figure 1-1.

Figure 1-1 Copy Menu

2. Place a formatted 1.44 MB floppy disk into the A: drive.

NOTE Ensure that the disk is not write-protected.

3. Open the Trace menu: press Type, Trace.

4. From the Trace menu, select the type of file you want to copy.

5. If the Dir softkey does not have From underlined, press to underline
it. This highlights the From: field (the directory from which you will
copy)

6. Select the desired directory and highlight the file that you wish to
copy.

7. Press Dir to underline To.

The To: field highlights. This is the directory to which you will copy.

8. Select the desired directory and press Copy Now.

The message Copying file appears. When complete, the status bar
displays: <directory><filename> file copied.
Chapter 1 11

The Basics
Using Files

T
h

e
B

as
ic

s

12 Chapter 1

C
om

p
arin

g
 Tw

o
S

ig
n

als:
F

req
u

ency
an

d
A

m
p

litud
e

2 Comparing Two Signals:
Frequency and Amplitude
13

Comparing Two Signals: Frequency and Amplitude

C
om

p
ar

in
g

 T
w

o
S

ig
n

al
s:

F

re
q

u
en

cy
an

d
A

m
p

lit
ud

e

This chapter provides the following examples:

• “Comparing Signals on the Same Screen” on page 16

You can compare two signals whether they both appear on the screen
at the same time (as shown above), or not (as shown in the following
figure).
14 Chapter 2

Comparing Two Signals: Frequency and Amplitude

C
om

p
arin

g
 Tw

o
S

ig
n

als:
F

req
u

ency
an

d
A

m
p

litud
e

• “Comparing Signals not on the Same Screen” on page 20

The ability to compare signals when only one can be displayed at a
time is useful for harmonic distortion tests, or any time narrow span
and bandwidth are necessary to measure low-level signals.
Chapter 2 15

Comparing Two Signals: Frequency and Amplitude
Comparing Signals on the Same Screen

C
om

p
ar

in
g

 T
w

o
S

ig
n

al
s:

F

re
q

u
en

cy
an

d
A

m
p

lit
ud

e

Comparing Signals on the Same Screen

Signals with Constant Levels (using Marker Delta)

1. Preset the analyzer, then set the following:

2. Ensure that the rear panel 10 MHz output is on:

Press Input/Output. Check the 10MHz Out softkey. If Off is selected
(underlined), press the key to select On.

3. Connect the analyzer’s rear panel 10 MHz OUT (SWITCHED) to the
front-panel RF input.

4. Place a marker on the 10 MHz peak: Press Peak Search.

5. Anchor the first marker and activate a second marker at the same
position: Press Marker, Delta.

Note that the label on the first marker changes to 1R, indicating that
it is the reference point.

6. Use the knob to move the second marker (labeled 1) to a different
peak (for this example, the 20 MHz peak).

Because delta marker is now the active function, both the active
function block and the marker annotation display the amplitude and
frequency difference between the markers, as shown in Figure 2-1.

7. Turn the markers off: Press Marker, Off.

NOTE Alternate Methods

Replace the keystrokes in steps 4 through 6 with either:

• Press Sweep, Single, Peak Search, Marker, Delta, Return (or Peak
Search), Next Peak.

(the Return hardkey is located directly below the softkeys)

Or

• Press Marker and use the knob to position the marker. Then press
Marker, Delta and position the second marker.

• Reference Level:

• Center Frequency:

• Span:

10 dBm

30 MHz

50 MHz
16 Chapter 2

Comparing Two Signals: Frequency and Amplitude
Comparing Signals on the Same Screen

C
om

p
arin

g
 Tw

o
S

ig
n

als:
F

req
u

ency
an

d
A

m
p

litud
e

Figure 2-1 Reading the Marker Delta Value
Chapter 2 17

Comparing Two Signals: Frequency and Amplitude
Comparing Signals on the Same Screen

C
om

p
ar

in
g

 T
w

o
S

ig
n

al
s:

F

re
q

u
en

cy
an

d
A

m
p

lit
ud

e

Signals with Varying Levels (using Delta Pair)

The Delta Marker function (described on page 16) anchors the reference
marker in both frequency and amplitude. The Delta Pair function,
described in this example, enables the reference marker to remain on
the trace, and lets you adjust either the reference marker or the delta
marker, or both.

1. Preset the analyze, then set the following:

2. With the rear panel 10 MHz output on (As described on page 16, in
Step 2.), connect the analyzer’s rear panel 10 MHz OUT (SWITCHED)
to the front-panel RF input.

3. Place a marker on the 10 MHz peak: Press Peak Search.

4. Anchor the first marker and activate a second marker at the same
position: Press Marker, Delta.

5. Use the knob to move the second marker (labeled 1) to a different
peak (for this example, the 20 MHz peak).

The marker annotation shows the difference between the two peaks.

6. Remove the signal from the input.

Note that the reference marker remains anchored at the former
frequency and amplitude of the 10 MHz signal. The delta marker
stays on the trace and now shows the difference between the noise
level at the delta frequency and the original amplitude of the
10 MHz signal.

7. Reconnect the signal, then reset the marker to a single marker on
the 10 MHz peak:

Press Marker, Normal, Peak Search.

Activate a second marker at the same position without anchoring the
first marker: Press Marker, Delta Pair.

8. Select the second marker: Press Delta Pair again, to underline ∆.

9. Use the knob to move the second marker (labeled 1) to a different
peak (for this example, the 30 MHz peak).

Because delta marker is the active function, both the active function
block and the marker annotation display the amplitude and
frequency difference between the markers (just as when using the
Delta Marker function, as shown in Figure 2-1).

10.Select the reference marker: Press Delta Pair to select (underline) Ref.

• Reference Level:

• Center Frequency:

• Span:

10 dBm

30 MHz

50 MHz
18 Chapter 2

Comparing Two Signals: Frequency and Amplitude
Comparing Signals on the Same Screen

C
om

p
arin

g
 Tw

o
S

ig
n

als:
F

req
u

ency
an

d
A

m
p

litud
e

11.Use the knob to move the reference marker to the 20 MHz peak.

Note that as you move the marker, it stays on the trace.

Now the active function block and the marker annotation display the
amplitude and frequency difference between the 20 MHz and
30 MHz peaks, as shown in Figure 2-2.

12.Disconnect the signal input. Note that both markers drop into the
noise.

13.Turn the markers off: Press Marker, Off.

Figure 2-2 Reading the Marker Delta Value
Chapter 2 19

Comparing Two Signals: Frequency and Amplitude
Comparing Signals not on the Same Screen

C
om

p
ar

in
g

 T
w

o
S

ig
n

al
s:

F

re
q

u
en

cy
an

d
A

m
p

lit
ud

e

Comparing Signals not on the Same Screen

1. Preset the analyzer, then set the following:

2. With the rear panel 10 MHz output on (As described on page 16, in
Step 2.), connect the analyzer’s rear panel 10 MHz OUT (SWITCHED)
to the front-panel RF input.

3. Place a marker on the 10 MHz peak: Press Peak Search.

Setting Center
Frequency
Step Size

4. Set the center frequency step size equal to the marker frequency (in
this example, 10 MHz): Press Marker ➞ , Mkr ➞ CF Step.

5. Activate the marker delta function: Press Marker, Delta.

6. Increase the center frequency by 10 MHz:

Press FREQUENCY, Center Freq, ⇑ .

Figure 2-3 shows the reference annotation for the delta marker (1R)
at the left side of the display, indicating that the 10 MHz reference
signal is at a lower frequency than the frequency range currently
displayed.

The delta marker appears on the peak of the 20 MHz component.
The delta marker annotation displays the amplitude and frequency
difference between the 10 and 20 MHz signal peaks.

Figure 2-3 Delta Marker with Reference Signal Off–Screen

• Reference Level:

• Center Frequency:

• Span:

10 dBm

10 MHz

5 MHz

Reference Annotation
20 Chapter 2

M
easu

rin
g a L

ow
−L

evel S
ig

n
al
3 Measuring a Low−Level Signal
21

Measuring a Low−Level Signal
M

ea
su

ri
ng

 a
 L

ow
−L

ev
el

 S
ig

n
al
The analyzer’s ability to measure a low-level signal is limited by
internally-generated noise. The measurement setup can be changed in
several ways to improve the analyzer’s sensitivity. Resolution
bandwidth settings, when properly adjusted, affect the level of internal
noise without affecting the signal amplitude.

This chapter provides the following examples:

• “Reducing Input Attenuation” on page 23

The input attenuator affects the level of a signal passing through the
instrument. If a signal is very close to the noise floor, reducing input
attenuation can bring the signal out of the noise.

CAUTION Ensure that the total power of all input signals at the analyzer RF
input does not exceed +30 dBm (1 watt).

• “Decreasing the Resolution Bandwidth” on page 25

Resolution bandwidth settings affect the level of internal noise
without affecting the signal level. Decreasing the RBW by a decade
reduces the noise floor by 10 dB.

• “Using the Average Detector and Increased Sweep Time” on page 26

When the analyzer’s noise masks low-level signals, changing to the
average detector and increasing the sweep time smooths the noise
and improves the signal’s visibility. Slower sweeps are required to
average more noise variations.

• “Trace Averaging” on page 27

Averaging is a digital process in which each trace point is averaged
with the previous trace-point average. Selecting averaging changes
the detection mode from normal (a type of peak detection) to sample,
smoothing the displayed noise level. Sample mode displays the
instantaneous value of the signal at the end of the time or frequency
interval represented by each display point, rather than the value of
the peak during the interval. Sample mode may not measure a
signal’s amplitude as accurately as normal mode, because it may not
find the true peak.
22 Chapter 3

Measuring a Low−Level Signal
Reducing Input Attenuation

M
easu

rin
g a L

ow
−L

evel S
ig

n
al
Reducing Input Attenuation

CAUTION Ensure that the total power of all input signals at the analyzer RF
input does not exceed +30 dBm (1 watt).

1. Preset the analyzer, then set the following:

2. Connect the signal source to the analyzer’s RF input.

3. Move the desired peak (in this example, 300 MHz) to the center of
the display:

Press Peak Search, Marker ➞ , Mkr ➞ CF.

4. Reduce the span to 1 MHz (as shown in Figure 3-1):

Press Span, 1, MHz.

If necessary, re-center the peak.

5. Set the attenuation to 20 dB:

Press AMPLITUDE, Attenuation, 2, 0, dB.

Note that increasing the attenuation moves the noise floor closer to
the signal level.

A “#” mark appears next to the Atten annotation at the top of the
display, indicating that the attenuation is no longer coupled to other
analyzer settings.

6. To see the signal more clearly, set the attenuation to 0 dB (as shown
in Figure 3-2).

CAUTION When you finish this example, increase the attenuation to protect the
analyzer’s RF input:

Either press Attenuation so that Auto is selected, or press Auto Couple.

On a Signal Source On the Analyzer

• Frequency:

• Amplitude:

• RF Output:

300 MHz

–80 dBm

On

• Reference Level:

• Center Frequency:

• Span:

–40 dBm

300 MHz

5 MHz
Chapter 3 23

Measuring a Low−Level Signal
Reducing Input Attenuation

M
ea

su
ri

ng
 a

 L
ow

−L
ev

el
 S

ig
n

al
Figure 3-1 Low-Level Signal

Figure 3-2 Using 0 dB Attenuation
24 Chapter 3

Measuring a Low−Level Signal
Decreasing the Resolution Bandwidth

M
easu

rin
g a L

ow
−L

evel S
ig

n
al
Decreasing the Resolution Bandwidth

1. Preset the analyzer, then set the following:

2. Connect the signal source to the analyzer RF input.

3. Decrease the resolution bandwidth: Press BW/Avg, ⇓.

The low-level signal appears more clearly because the noise level is
reduced (see Figure 3-3).

Figure 3-3 Decreasing Resolution Bandwidth

A “#” mark appears next to the Res BW annotation in the lower left
corner of the screen, indicating that the resolution bandwidth is
uncoupled.

RBW Selections Using the step keys, you can change the RBW in a 1−3−10 sequence.
Choosing the next lower RBW for better sensitivity increases the sweep
time by about 10:1 for swept measurements, and about 3:1 for FFT
measurements (within the limits of RBW).

Using the knob or keypad, you can select RBWs from 1 Hz to 3 MHz in
approximately 10% increments, plus 4, 5, 6 and 8 MHz. This enables
you to make the trade off between sweep time and sensitivity with finer
resolution.

On a Signal Source On the Analyzer

• Frequency:

• Amplitude:

• RF Output:

300 MHz

–80 dBm

On

• Reference Level:

• Center Frequency:

• Span:

–40 dBm

300 MHz

5 MHz
Chapter 3 25

Measuring a Low−Level Signal
Using the Average Detector and Increased Sweep Time

M
ea

su
ri

ng
 a

 L
ow

−L
ev

el
 S

ig
n

al
Using the Average Detector and
Increased Sweep Time

1. Preset the analyzer, then set the following:

2. Connect the signal source to the analyzer’s RF input.

3. Select the average detector: Press Det/Demod, Detector, Average.

A “#” mark appears next to the Avg annotation, indicating that the
detector has been chosen manually (see Figure 3-4).

4. Increase the sweep time and note how the noise smooths out, as
there is time to average more noise values for each of the displayed
data points: Press Sweep, Sweep Time, ⇑ .

5. With the sweep time at 100 ms, change the Avg/VBW type to
log averaging: Press BW/Avg, Avg/VBW Type, Log-Pwr.

Figure 3-4 The Effect of Sweep Time

On a Signal Source On the Analyzer

• Frequency:

• Amplitude:

• RF Output:

300 MHz

–80 dBm

On

• Reference Level:

• Center Frequency:

• Span:

–40 dBm

300 MHz

5 MHz

indicates
manually-chosen

detector
26 Chapter 3

Measuring a Low−Level Signal
Trace Averaging

M
easu

rin
g a L

ow
−L

evel S
ig

n
al
Trace Averaging
Trace averaging is a digital process that averages each trace point with
the previous trace-point average.

NOTE This is a trace processing function and is not the same as using the
Average detector (as described on page 26).

1. Preset the analyzer, then set the following:

2. Connect the signal source to the analyzer RF input.

3. Initiate video averaging: Press BW/Avg, Average (to select On).

As the averaging routine smooths the trace, low level signals become
more visible. Average 100 (the default number of samples, or
sweeps, to complete the averaging routine) appears in the active
function block.

4. With average as the active function, set the number of samples to 25:

Press 2, 5, Enter.

Annotation on the left side of the graticule shows the type of
averaging (LgAV in this example, as shown in Figure 3-5), and the
number of traces averaged.

Changing most active functions restarts the averaging, as does
toggling the Average key. Once the set number of sweeps completes,
the analyzer continues to provide a running average based on this
set number.

NOTE If you want the measurement to stop after the set number of sweeps,
use single sweep: Press Sweep, Sweep (to select Single), and then toggle
the Average key.

On a Signal Source On the Analyzer

• Frequency:

• Amplitude:

• RF Output:

300 MHz

–80 dBm

On

• Reference Level:

• Center Frequency:

• Span:

–40 dBm

300 MHz

5 MHz
Chapter 3 27

Measuring a Low−Level Signal
Trace Averaging

M
ea

su
ri

ng
 a

 L
ow

−L
ev

el
 S

ig
n

al
Figure 3-5 Using Trace Averaging, Continuous Sweep

Trace Averaging
Annotation
28 Chapter 3

R
eso

lvin
g

 S
ig

n
als
4 Resolving Signals
29

Resolving Signals
R

es
o

lv
in

g
 S

ig
n

al
s

This chapter provides the following examples:

• “Separating Equal-Amplitude Signals” on page 32

Two equal-amplitude input signals that are close in frequency can
appear as one on the analyzer display. When the analyzer measures
a single-frequency signal, it displays the signal with the shape of the
selected internal resolution bandwidth filter. As you change the filter
bandwidth, you change the width of the displayed response. If you
use a wide filter, two equal-amplitude input signals that are close in
frequency appear as one signal. The analyzer’s internal filter
bandwidths determine signal resolution (how close equal-amplitude
signals can be and still be distinguished).

The resolution bandwidth function selects the internal filter
bandwidth, and is defined as the 3 dB bandwidth of the filter. To
resolve two signals of equal amplitude, you must set the resolution
bandwidth less than or equal to the frequency separation of the two
signals. If the bandwidth is equal to the separation and the video
bandwidth is less than the resolution bandwidth, you will see a dip
of approximately 3 dB between the peaks of the two signals.

For swept analysis, reducing the resolution bandwidth requires an
increase in sweep time to keep a measurement calibrated. For best
measurement times: set the sweep time (Sweep, Sweep Time) to Auto,
and the auto sweep time (Sweep, Auto Sweep Time) to Norm. Use the
widest resolution bandwidth that still permits resolution of all
desired signals.

• “Finding a Small Signal Hidden by a Larger Signal” on page 34

When signals are close together but not equal in amplitude, you
must consider the shape of the analyzer’s internal filter as well as its
3 dB bandwidth. If a small signal is too close to a larger signal, the
smaller signal can be hidden by the skirt of the filter.

To view the smaller signal, select a resolution bandwidth such that k
is less than a (see Figure 4-1). The separation between the two
signals (a) must be greater than half the filter width of the larger
signal (k), measured at the amplitude level of the smaller signal.

The digital filters in this instrument have filter widths about
one-third as wide as typical analog RBW filters. This enables you to
resolve close signals with a wider RBW (and consequently, a faster
sweep).
30 Chapter 4

Resolving Signals
R

eso
lvin

g
 S

ig
n

als
Figure 4-1 Resolution Bandwidth Requirements to Resolve Small Signals
Chapter 4 31

Resolving Signals
Separating Equal-Amplitude Signals

R
es

o
lv

in
g

 S
ig

n
al

s

Separating Equal-Amplitude Signals
The following example shows how to differentiate equal-amplitude
signals separated by 100 kHz.

1. Connect two sources to the analyzer’s RF input as follows:

2. Preset the analyzer, then set the following:

A single signal peak should be visible.

NOTE If you cannot find the signal peak, increase the span to 20 MHz, then
use signal tracking to bring the signal to the center of the screen:

Press FREQUENCY, Signal Track (press to underline On).

Reduce the span back to 2 MHz, then turn signal tracking off.

3. Because the resolution bandwidth must be less than or equal to the

On Source 1 On Source 2

• Frequency:

• Amplitude:

• RF Output:

300 MHz

–20 dBm

On

• Frequency:

• Amplitude:

• RF Output:

300.1 MHz

–20 dBm

On

On the Analyzer

• Center Frequency:

• Span:

• Resolution bandwidth:

300 MHz

2 MHz

300 kHz

Press BW/Avg, Resolution BW, 3, 0, 0, kHz.
32 Chapter 4

Resolving Signals
Separating Equal-Amplitude Signals R

eso
lvin

g
 S

ig
n

als
frequency separation of the two signals, change the resolution
bandwidth to 100 kHz.

4. Decrease the video bandwidth to 10 kHz, as shown in Figure 4-2:

Press BW/Avg, Video BW, 1, 0, kHz.

Note that when you narrowed the span, the annotation for phase
noise optimization changed. The optimization is now for viewing
signals greater than 50 kHz away from the 300 MHz signal.

Figure 4-2 Resolving Signals of Equal Amplitude

You can experiment with reducing the resolution bandwidth further to
better resolve the signals. As you reduce the resolution bandwidth, the
resolution of the individual signals improves, but the sweep gets slower.
For fastest measurement times, use the widest resolution bandwidth
that still displays two distinct signals.

Under factory preset conditions, the resolution bandwidth is coupled
(linked) to the span. Because you change the resolution bandwidth from
the coupled value, a # mark appears next to Res BW in the lower-left
corner of the screen, indicating that the resolution bandwidth is
uncoupled (also see the Auto Couple key description in the
PSA Reference Guide).

NOTE To resolve two signals of equal amplitude with a frequency separation
of 200 kHz, you must use a resolution bandwidth (RBW) < 200 kHz. To
enter RBW values between the 1, 3, 5 sequence provided by the
up/down arrow keys, you must use the knob or data keys. In this
example, the up/down arrow keys would select a 300 kHz filter which is
greater than the signal separation and will not resolve the signals.

Phase Noise Optimization
Annotation
Chapter 4 33

Resolving Signals
Finding a Small Signal Hidden by a Larger Signal

R
es

o
lv

in
g

 S
ig

n
al

s

Finding a Small Signal Hidden by
a Larger Signal
The following example demonstrates how to resolve two signals
separated by 50 kHz and 60 dB.

1. Connect the equipment as shown on page 32, then set the sources as
follows:

2. Preset the analyzer, then set:

3. Set the 300 MHz signal to the reference level (top graticule):

Press Peak Search, Marker ➞ , Mkr ➞ Ref Lvl.

4. Place a marker on the smaller signal:

Press Marker, Delta, Peak Search, Next Pk Right.

When you use a 10 kHz filter with a typical shape factor of 4.1:1, the
filter has a bandwidth of 41 kHz at the 60 dB point. Because the
half-bandwidth value (20.5 kHz) is narrower than the frequency
separation, the input signals are resolved, as shown in Figure 4-3.

Figure 4-3 Signal Resolution with a 10 kHz Resolution Bandwidth

If you use a resolution bandwidth where the half-bandwidth value is

Source 1: 300 MHz −20 dBm RF output on

Source 2: 300.05 MHz −80 dBm RF output on

• Center Frequency:

• Span:

300 MHz

300 kHz

• Resolution Bandwidth: 10 kHz
34 Chapter 4

Resolving Signals
Finding a Small Signal Hidden by a Larger Signal R

eso
lvin

g
 S

ig
n

als
wider than the frequency separation, the signals may not be resolved,
as shown in Figure 4-4.

In this example, the signal amplitude difference is 60 dB. To determine
the resolution capability for intermediate amplitude differences,
assume the filter skirts between the 3 dB and 60 dB points are
parabolic, like an ideal Gaussian filter. The resolution capability is
approximately:

where ∆f is the separation between the signals.

Figure 4-4 Signal Resolution with a 100 kHz Resolution Bandwidth

12.04 dB
∆f

RBW
------------- 

 •
2

Chapter 4 35

Resolving Signals
Finding a Small Signal Hidden by a Larger Signal

R
es

o
lv

in
g

 S
ig

n
al

s

36 Chapter 4

Tracking
 a D

riftin
g

 S
ig

n
al
5 Tracking a Drifting Signal
37

Tracking a Drifting Signal
Tr

ac
ki

n
g

a
D

ri
ft

in
g

 S
ig

n
al
This chapter provides the following examples:

• “Tracking a Signal” on page 39

When you measure a signal peak and must repeatedly adjust the
center frequency because the signal drifts, you can use the signal
track function to automatically keep the selected peak in the center
of the display.

• “Measuring a Source’s Drift” on page 41

You can use the maximum-hold function to display and hold the
maximum amplitude level and frequency drift of an input signal
trace. You can also use the maximum hold function to determine how
much of the frequency spectrum a signal occupies.

Equipment Both examples require a signal source.
38 Chapter 5

Tracking a Drifting Signal
Tracking a Signal

Tracking
 a D

riftin
g

 S
ig

n
al
Tracking a Signal

1. Preset the analyzer, then set the following:

2. Connect the signal source to the analyzer’s RF input.

Because you set the analyzer’s center frequency to a different value
than that of the source’s output, the 300 MHz peak is not in the
center of the display.

3. Turn on signal tracking: Press FREQUENCY, Signal Track (press to
underline On).

This does the following:

• Places a marker on the highest-amplitude peak.

• Brings the selected peak to the center of the display.

• Adjusts the center frequency each sweep to keep the selected
peak in the center.

• Turns on the signal track annotation (see Figure 5-1).

4. When you have both signal track and marker delta on, you can read
any signal drift from the screen:

Press Marker, Delta. The marker readout indicates any change in
frequency and amplitude as the signal moves.

5. Slowly change the source’s frequency, and note that the analyzer’s
center frequency changes, centering the signal with each change (see
Figure 5-1).

6. Experiment with different spans, and with changing the frequency
more slowly and more quickly, to see what happens.

On a Signal Source On the Analyzer

• Frequency:

• Amplitude:

• RF Output:

300 MHz

–20 dBm

On

• Center Frequency:

• Span:

301 MHz

10 MHz
Chapter 5 39

Tracking a Drifting Signal
Tracking a Signal

Tr
ac

ki
n

g
a

D
ri

ft
in

g
 S

ig
n

al
Figure 5-1 Using Signal Tracking to Track a Drifting Signal

Signal Track
Annotation
40 Chapter 5

Tracking a Drifting Signal
Measuring a Source’s Drift

Tracking
 a D

riftin
g

 S
ig

n
al
Measuring a Source’s Drift

1. Preset the analyzer, then set the following:

2. Connect the signal source to the analyzer’s RF input, and place a
marker on the peak of the signal: Press Peak Search.

3. Change the span to 500 kHz (if necessary, recenter the signal).

4. Measure the excursion of the signal: Press Trace/View, then Max Hold.

As the input signal varies, maximum hold maintains the signal’s
maximum responses. The annotation on the left side of the screen
(M1 S2 S3) shows that trace 1 is in maximum-hold mode; traces 2
and 3 are in store-blank mode.

5. Select trace 2: Press Trace/View, Trace 1 2 3 (until 2 is underlined)

6. Clear trace 2 and have it continuously display during sweep:

Press Clear Write.

Trace 1, in maximum hold, shows any frequency shift in the signal.

7. Slowly change the source’s frequency in 1 kHz steps. The analyzer
display should look similar to Figure 5-2.

On a Signal Source On the Analyzer

• Frequency:

• Amplitude:

• RF Output:

300 MHz

–20 dBm

On

• Center Frequency:

• Span:

300 MHz

10 MHz
Chapter 5 41

Tracking a Drifting Signal
Measuring a Source’s Drift

Tr
ac

ki
n

g
a

D
ri

ft
in

g
 S

ig
n

al
Figure 5-2 Viewing a Drifting Signal Using Max Hold

Trace 1 shows
frequency shift

Trace Status
Annotation
42 Chapter 5

M
akin

g
 D

isto
rtio

n
M

easu
rem

en
ts
6 Making
Distortion Measurements
43

Making Distortion Measurements
M

ak
in

g
 D

is
to

rt
io

n
M

ea
su

re
m

en
ts
This chapter provides the following examples:

• “Identifying Distortion from the Analyzer”

— “Identifying Harmonic Distortion Products” on page 45

High-level input signals can cause analyzer distortion products
that mask input signal distortion.

— “Measuring the Analyzer’s
Third-Order Intermodulation Distortion” on page 47

Two-tone, third-order intermodulation distortion is a common
test in communication systems. When two signals are present in a
non-linear system (a system with components such as amplifiers
and mixers), signals can interact and create distortion products
close to the original signals.

• “Measuring Harmonics and Harmonic Distortion” on page 49

This example describes how to make a harmonic measurement, and
details the calculation of the total harmonic distortion for stable,
modulated or unmodulated signals.
44 Chapter 6

Making Distortion Measurements
Identifying Distortion from the Analyzer

M
akin

g
 D

isto
rtio

n
M

easu
rem

en
ts
Identifying Distortion from the Analyzer

Identifying Harmonic Distortion Products

The following example uses an external signal, trace 2, and the RF
attenuator to determine whether harmonic distortion products are
generated by the analyzer.

1. Preset the analyzer, then set the following:

Connect the source to the analyzer. The analyzer displays the
200 MHz signal and harmonics spaced every 200 MHz (see Figure
6-1).

Figure 6-1 Harmonic Distortion

2. On the analyzer, place a marker on one of the observed harmonics,
and change the center frequency to the value of that harmonic.

3. Change the span to 50 MHz.

On a Signal Source On the Analyzer

• Frequency:

• Amplitude:

• RF Output:

200 MHz

0 dBm

On

• Center Frequency:

• Span:

400 MHz

500 MHz
Chapter 6 45

Making Distortion Measurements
Identifying Distortion from the Analyzer

M
ak

in
g

 D
is

to
rt

io
n

M
ea

su
re

m
en

ts
4. Change the attenuation to 0 dB.

5. Save the screen data in trace 2:

Press Trace/View, Trace 1 2 3 (to underline 2), then Clear Write.

Allow the trace to update (two sweeps), then press View.

6. Place a delta marker on the harmonic:

Press Peak Search, Marker, Delta.

The analyzer display shows the stored data in trace 2 and the
measured data in trace 1. The ∆Mkr1 amplitude reading is the
difference in amplitude between the reference and active markers.

7. Increase the RF attenuation to 10 dB. See Figure 6-2.

Figure 6-2 RF Attenuation of 10 dB

The ∆Mkr1 amplitude reading comes from two sources:

• Increased input attenuation causes poorer signal-to-noise ratio.
This can cause the ∆Mkr1 to be positive.

• The reduced contribution of the analyzer circuits to the harmonic
measurement can cause the ∆Mkr1 to be negative.

Large ∆Mkr1 measurements indicate significant measurement
errors. For the best measurement accuracy, set the input attenuator
to minimize the absolute value of ∆Mkr1.
46 Chapter 6

Making Distortion Measurements
Identifying Distortion from the Analyzer

M
akin

g
 D

isto
rtio

n
M

easu
rem

en
ts
Measuring the Analyzer’s
Third-Order Intermodulation Distortion

The following example uses two sources at a frequency separation of
1 MHz. If you choose to use different frequencies, be sure to maintain
the 1 MHz separation.

1. Set the sources for a frequency separation of 1 MHz:

2. Connect the equipment as shown in Figure 6-3, and preset the
analyzer.

CAUTION Ensure that the combiner has a high degree of isolation between the
two input ports so the sources do not intermodulate.

Figure 6-3 Equipment Setup

3. On the analyzer, set:

Source 1: 300 MHz –5 dBm RF output on

Source 2: 301 MHz –5 dBm RF output on

• Center Frequency:

• Span:

300.5 MHz

5 MHz (wide enough to see the distortion products)

To be sure the distortion products are resolved, adjust the resolution bandwidth
as needed until the distortion products are visible.
Chapter 6 47

Making Distortion Measurements
Identifying Distortion from the Analyzer

M
ak

in
g

 D
is

to
rt

io
n

M
ea

su
re

m
en

ts
4. Set the mixer input level to −30 dBm:

Press AMPLITUDE, More, More, Max Mixer Lvl, 3, 0, −dBm.

5. Move the signal to the reference level:

Press Marker, Peak Search, Marker ➞ , Mkr ➞ Ref Lvl.

6. Reduce the resolution bandwidth until the distortion products are
visible: Press BW/Avg, ⇓ .

7. Use the delta marker function to measure the difference between the
source signal and each distortion product (Figure 6-4 shows an
example of this):

Press Marker, Delta, then use the knob to move the delta marker to
the distortion product you want to measure.

For more information about measuring distortion products, see
“Measuring Harmonics and Harmonic Distortion” on page 49.

Figure 6-4 Measuring a Distortion Product
48 Chapter 6

Making Distortion Measurements
Measuring Harmonics and Harmonic Distortion

M
akin

g
 D

isto
rtio

n
M

easu
rem

en
ts
Measuring Harmonics and
Harmonic Distortion

NOTE This measurement assumes that the highest amplitude signal
displayed is the desired fundamental frequency.

The following example uses the 10 MHz Reference Output as the
fundamental source, and measures harmonics and total harmonic
distortion.

1. Preset the analyzer, then set the following:

2. With the rear panel 10 MHz output on (As described on page 16, in
Step 2.), connect the analyzer’s rear panel 10 MHz OUT (SWITCHED)
to the front-panel RF input.

• Reference Level:

• Center Frequency:

• Span:

• Resolution Bandwidth:

10 dBm

10 MHz

1 MHz

10 kHz (Press BW/Avg, 1, 0, kHz.)

Resolution bandwidth and attenuation are adjusted to maximize dynamic range while
maintaining a reasonable sweep time. Narrower resolution bandwidths provide greater dynamic
range, but lengthen sweep time. You can use the dynamic range graph (Figure 6-5 on page 50) to
help determine optimal settings. In this example, harmonics are within 50 dB of the
fundamental, requiring a 50 dBc dynamic range; a 10 kHz resolution bandwidth provides more
than enough dynamic range to view the second harmonic.

When measuring the Nth harmonic, the analyzer uses the narrowest resolution bandwidth that
is N times the resolution bandwidth used to measure the fundamental. Widening the resolution
bandwidth enables the measurement to capture all modulation on the harmonics. An asterisk (*)
appears next to the amplitudes of measured harmonics for which the desired resolution
bandwidth cannot be set. As long as the signal at the harmonic has less modulation width than
the RBW, the measurement is accurate.

• Attenuation: 40 dBm (Press AMPLITUDE, Attenuation, 4, 0, dB.)

Attenuation is set for optimal power at the mixer, which occurs at the intercept of the second
order harmonic line and the Displayed Average Noise Level (DANL) line for the resolution
bandwidth selected (see the note inside Figure 6-5). This occurs at a mixer level of approximately
−29 dBm. The input level from the 10 MHz Reference Output is +5 dBm in this example. Using
the mixer level and the input level in the equation below provides us with an optimal attenuation
setting of 34 dB.

Attenuation Setting (dB) = Input Level (dBm) – Mixer Level
Chapter 6 49

Making Distortion Measurements
Measuring Harmonics and Harmonic Distortion

M
ak

in
g

 D
is

to
rt

io
n

M
ea

su
re

m
en

ts
Figure 6-5 Dynamic Range Graph

3. To calculate the total harmonic distortion of a signal, perform the
following steps, in the following order:

a. Determine the frequencies of the harmonics.

b. For each harmonic:

1. Select the harmonic: Press Marker, then use the knob to move
the marker to the desired harmonic.

2. Span down to zero span: Press Span, Zero Span.

3. Measure the amplitude.

NOTE To display the amplitude in voltage units: press Amplitude, More, Y-Axis
Units, Volts.

c. Divide the root-sum-squares of the harmonic voltages by the
fundamental signal voltage. Then multiply the results by 100 to
arrive at a percentage:

where:

%THD = Total Harmonic Distortion as a percentage
h = harmonic number

Mixer Level (dBm)

D
y

n
a

m
ic

R
a

n
g

e
d

B
c

-70 -60 -50 -40 -30 -20 -10 0

-100

-90

-80

-70

-60

-50

-40

DANL
Second Order Distortion
Third Order Distortion

R
B
W

=10kH
z

R
B
W

=1kH
z

bn713a

*Optimal Power
at the mixer

%THD 100

Eh
2

h 2=

Hmax

∑
 
 
 
 

Ef

----------------------------×=
50 Chapter 6

Making Distortion Measurements
Measuring Harmonics and Harmonic Distortion

M
akin

g
 D

isto
rtio

n
M

easu
rem

en
ts
Hmax = Maximum Harmonic Value listed
Eh = voltage of harmonic h
Ef = voltage of fundamental signal

Example THD
Calculation

Number of harmonics (Hmax) = 5; measured values are:

then,

NOTE Alternate Method

You can use the analyzer’s built-in harmonic distortion measurement
capability: Press Measure, Harmonic Distortion, Trace/View, Harmonics &
THD.

Ef 5 dBm 3.162 mW 397.6 mV= = =

E2 42 dBc– 37 dBm– 199.5 nW 3.159 mV= = = =

E3 26 dBc– 21 dBm– 7.943 µW 19.93 mV= = = =

E4 49 dBc– 44 dBm– 39.81 nW 1.411 mV= = = =

E5 36 dBc– 31 dBm– 794.3 nW 6.302 mV= = = =

THD 100
3.159 mV

2
19.93 mV

2
1.411 mV

2
6.301 mV

2
+ + +

397.6 mV
--× 5.33%= =
Chapter 6 51

Making Distortion Measurements
Measuring Harmonics and Harmonic Distortion

M
ak

in
g

 D
is

to
rt

io
n

M
ea

su
re

m
en

ts
52 Chapter 6

M
easu

rin
g

 N
o

ise S
ig

n
als
7 Measuring Noise Signals
53

Measuring Noise Signals
M

ea
su

ri
n

g
 N

o
is

e
S

ig
n

al
s

There are several ways to measure noise power. This chapter provides
the following examples:

• “Measuring Noise at a Single Frequency” on page 55

This example uses the marker noise function. In this example, you
must pay attention to the potential errors due to a discrete signal
(spectral components). This measurement uses the analyzer’s
50 MHz reference signal.

• “Measuring Signal-to-Noise Levels” on page 57

For this measurement, the signal (carrier) is a discrete tone (the
50 MHz amplitude reference signal).

If the signal is a carrier that is modulated under normal operation,
you can use the amplitude reference signal as the signal of interest
and the noise of the analyzer for the noise measurement. In this
example, however, you set the input attenuator such that both the
signal and the noise are well within the calibrated region of the
display.

• “Measuring Total Noise Power” on page 58

This example uses markers to set the frequency span over which you
measure power. Markers enable you to select and measure any
portion of the displayed signal. The analyzer sets the sample display
detection mode, but you must set all other parameters.
54 Chapter 7

Measuring Noise Signals
Measuring Noise at a Single Frequency

M
easu

rin
g

 N
o

ise S
ig

n
als
Measuring Noise at a Single Frequency
This example uses the analyzer’s 50 MHz reference signal, and the
analyzer’s marker noise function.

1. With nothing connected to the RF input, preset the analyzer and set:

2. Turn on the analyzer’s 50 MHz amplitude reference signal:

Press Input/Output, Input Port, Amptd Ref (f=50MHz).

3. Activate the noise marker: Press Mkr Fctn, Marker Noise.

Note that the display detection changes to Avg; the marker floats
between the maximum and the minimum noise. The marker readout
is in dBm(1Hz) or dBm per unit bandwidth (see Figure 7-1 on page
56).

For noise power in a different bandwidth, add . For
example, for noise power in a 1 kHz bandwidth, add 30 dB
() to the noise marker value.

4. To reduce the variations of the sweep-to-sweep marker value, change
the sweep time to 3 seconds: Press Sweep, Sweep Time, 3, s.

NOTE Noise measurements are noisy. Increasing the sweep time enables the
average detector to average over a longer time interval, thus reducing
the variations in the results.

5. The noise marker value is based on the mean of 33 trace points
centered at the marker. With a total of 601 points across the entire
trace, the 33 points cover approximately half of a division.

To see the effect, press Marker and use the knob to move the marker
to the 50 MHz signal.

The marker does not go to the peak of the signal because not all 33
trace points are at the peak of the signal.

6. Widen the resolution bandwidth to 10 kHz: Press BW/Avg, 1, 0, kHz.

7. Again press Marker and move the marker to the signal.

The 33 trace points still cover over 0.55 divisions, but the signal level
is close to constant over this range, so the marker is closer to the
peak of the signal.

• Attenuation

• Center Frequency:

• Span:

40 dB

49.98 MHz

100 kHz

10 log× BW()

10 log 1000()×
Chapter 7 55

Measuring Noise Signals
Measuring Noise at a Single Frequency

M
ea

su
ri

n
g

 N
o

is
e

S
ig

n
al

s

8. Return the resolution bandwidth to automatic mode:

Press BW/Avg,Res BW (until Auto is underlined).

Figure 7-1 Activating the Noise Marker

9. Press Marker and use the knob to place the marker at 49.99625 MHz
to measure the noise very close to the signal.

Note that the marker reads an incorrect value, because some of the
trace points are on the skirt of the signal response.

10. Set the analyzer for zero span: Press SPAN, Zero Span, Marker.

Note that the marker value is now correct.

Using the Avg
detector
56 Chapter 7

Measuring Noise Signals
Measuring Signal-to-Noise Levels

M
easu

rin
g

 N
o

ise S
ig

n
als
Measuring Signal-to-Noise Levels
This example uses the analyzer’s 50 MHz amplitude reference signal.

1. Preset the analyzer, then set:

2. Turn on the analyzer’s 50 MHz amplitude reference signal, as
described on page 55, in Step 2.

3. Place a marker on the peak of the signal, then place a delta marker
in the noise at a 200 kHz offset: Press Marker, Delta, ⇑ , ⇑ , kHz.

4. Turn on the marker noise function: Press Mkr Fctn, Marker Noise.
This lets you view the results of the signal-to-noise measurement
(Figure 7-2).

Read the signal-to-noise in dB/Hz, which is the noise value
determined for a 1-Hz noise bandwidth. For noise value at a
different bandwidth, increase the ratio by . For example, if
the analyzer reads −70 dB/Hz, but you used a channel bandwidth of
30 kHz:

Note that the detection mode is now Avg, and that the power average
(PAvg) display function is selected.

NOTE If the delta marker is within one-half a division of the response to a
discrete signal (in this case, the amplitude reference signal), there is
potential for measurement error.

Figure 7-2 Measuring the Signal-to-Noise

• Reference Level:

• Attenuation

–10 dBm

40 dB

• Center Frequency:

• Span:

50 MHz

1 MHz

10 log× BW()

S N⁄ 70dB– Hz⁄ 10 30kHz()log×+ 25.2dB 30⁄ kHz–= =

Detection Mode
Annotation

Power Average
Annotation
Chapter 7 57

Measuring Noise Signals
Measuring Total Noise Power

M
ea

su
ri

n
g

 N
o

is
e

S
ig

n
al

s

Measuring Total Noise Power
You can use markers to set the frequency span over which you measure
power. Markers enable you to select and measure any portion of the
displayed signal. The analyzer selects the average display detector, but
you must set all other parameters.

1. Preset the analyzer, then set:

2. Set the marker span to 40 kHz:

Press Marker, Span Pair (until Span is underlined), 4, 0, kHz.

NOTE Alternate Method

You can also use Delta Pair to set the measurement start and stop points
independently (as described on page 18).

The resolution bandwidth should be about 1 to 3% of the
measurement (marker) span (which is 40 kHz in this example). The
analyzer’s default resolution bandwidth is approximately 1 kHz.

3. Measure the power between markers:

Press Mkr Fctn, Band/Intvl Power.

The analyzer displays the total power between the markers, as
shown in Figure 7-3 on page 59.

4. Add a discrete tone (the analyzer’s 50 MHz amplitude reference
signal) to see how it affects the reading (also see Figure 7-4 on page
59):

Press Input/Output, Input Port, Amptd Ref Out (f=50MHz).

5. Move the measured span:

Press Marker, Span Pair (Center underlined).

Then use the knob to exclude the tone and note reading.

• Reference Level:

• Attenuation

–20 dBm

40 dB

• Center Frequency:

• Span:

50 MHz

100 kHz
58 Chapter 7

Measuring Noise Signals
Measuring Total Noise Power

M
easu

rin
g

 N
o

ise S
ig

n
als
Figure 7-3 Viewing Power Between the Markers

Figure 7-4 Viewing the 50 MHz Signal Between the Markers
Chapter 7 59

Measuring Noise Signals
Measuring Total Noise Power

M
ea

su
ri

n
g

 N
o

is
e

S
ig

n
al

s

60 Chapter 7

M
easu

ring
 th

e P
ow

er o
f D

ig
ital S

ig
n

als
8 Measuring the Power of Digital
Signals
61

Measuring the Power of Digital Signals
M

ea
su

ri
n

g
th

e
P

ow
er

 o
f

D
ig

it
al

 S
ig

n
al

s

There are several ways to measure the power of noise, or of the
noise-like signals which are common in digitally modulated systems.
This chapter provides the following examples:

• “Making Power Measurements on Burst Signals” on page 63

The Burst Power measurement is a very accurate method of
determining the average power for the specified burst. The analyzer
is set into zero-span mode, with a sweep time that captures at least
one burst. The default is just more than a single burst, but the user
may change this using the ‘Sweep Time’ softkey in the ‘Sweep’ menu.

• “Making Statistical Power Measurements (CCDF)” on page 67

The CCDF (complimentary cumulative distribution function)
measurement is a statistical measurement of a signal’s high-level or
peak power. It is a graphical representation of the percentage of time
a signal exceeds its average power, and by how much this average is
exceeded.

All CDMA signals, and W-CDMA signals in particular, are
characterized by high power peaks that only occur occasionally. It is
important that these peaks are preserved, otherwise individual data
channels will not be received properly. A signal with higher
probabilities of high peaks is often more distorted by signal
processing elements that cannot handle the peaks. If a CDMA
system works well most of the time, only failing occasionally, the
cause can often be traced to compression of the higher peak signals.

• “Making Measurements of Adjacent Channel Power (ACP)” on page
70

ACP measures the total power in the specified channel and its
adjacent channels for up to six pairs of offset frequencies. The offset
frequencies can be modified at any time, but the default values are
those specified by the relevant international standard that you
select. The results are displayed by default both as power relative to
the carrier (in dBc) and as absolute power (dBm).

• “Making Measurements of Multi-Carrier Power (MCP)” on page 74

MCP measures the total power in two or more transmit channels
and their adjacent channels for up to three pairs of offset
frequencies. The offset frequencies can be modified at any time, but
the default values are those specified by the relevant international
standard that you select. This measurement is available with no
radio standard selected or when you select any of the following radio
standards: IS-95, J-STD-008, all cdma2000 standards, or W-CDMA.
Results for carriers without power present are displayed relative to
the reference carrier. Results for adjacent channels are displayed
both in absolute power (dBm) and as power relative to the reference
carrier (dBc).
62 Chapter 8

Measuring the Power of Digital Signals
Making Power Measurements on Burst Signals

M
easu

ring
 th

e P
ow

er o
f D

ig
ital S

ig
n

als
Making Power Measurements on Burst Signals
The following example demonstrates how to make a burst power
measurement on a Bluetooth signal broadcasting at 2.402 GHz.

1. Connect a DH1 Bluetooth signal to the analyzer input, preset the
analyzer and set:

Note that burst signal levels > −5 dBm may overload the analyzer.
You may need to set input attenuation to auto so the required
attenuation is added.

2. Select the burst power measurement.

Press MEASURE, More, Burst Power.

3. Set the best reference level for this measurement on this signal.

Press Meas Setup, Optimize Ref Level.

4. View the results using the full screen.

Press Display, Full Screen and you should see results similar to Figure
8-1.

Figure 8-1 Full Screen Display of Burst Power Measurement Results

• Mode:

• Mode setup, radio standard:

• Mode setup, std setup,
Packet Type:

• Center Frequency:

Spectrum Analysis

Bluetooth

DH1

2.402 GHz
Chapter 8 63

Measuring the Power of Digital Signals
Making Power Measurements on Burst Signals

M
ea

su
ri

n
g

th
e

P
ow

er
 o

f
D

ig
it

al
 S

ig
n

al
s

NOTE Alternate Methods

1. If an external trigger is available, connect this to Trigger In on the
rear of the instrument and press Trig, Ext Rear, or connect to Ext Trigger
Input on the front panel and press Trig, Ext Front.

2. You could also select Video trigger. It might then be necessary to
adjust the trigger level (as indicated by the horizontal green line) by
rotating the front panel knob or by entering a numeric value on the
keypad. For this example, set the trigger level to -30 dBm.

NOTE Although the Trigger Level allows the analyzer to detect the presence of
a burst, the Burst Power measurement is determined by the threshold
level, as described next.

5. Set the relative level above which the burst power measurement will
be calculated.

Press Meas Setup, Threshold Lvl (Rel) -10, dB.

The mean power of the burst is measured from the point where the
rising signal level rises above the threshold (green line) to the point
where the signal passes below it. In this example, the threshold level
has been set to be 10 dB below the peak value. Refer to Figure 8-2.

6. To specify the burst width for which the measurement will be taken:
Press Meas Setup, Meas Method, Measured Burst Width, Burst Width
(Man), 200, µs. This will measure just the central 200 µs of the burst.

The burst width is indicated on the screen by two vertical white lines
as shown in Figure 8-2. Manually setting the burst width allows you
to make it a long time interval (to include the rising and falling
edges of the burst) or to make it a short time interval, thus
measuring only a small central section of the burst.

NOTE The Bluetooth standard states that power measurements should be
taken from the central 60% of the burst only. Other radio standards use
different figures.

NOTE If you set the burst width manually to be wider than the screen's
display, the vertical white lines will move off the edges of the screen.
This could give misleading results as only the data on the screen can be
measured.
64 Chapter 8

Measuring the Power of Digital Signals
Making Power Measurements on Burst Signals

M
easu

ring
 th

e P
ow

er o
f D

ig
ital S

ig
n

als
Figure 8-2 Manually Setting the Burst Width

7. Change the sweep time to display more than one burst at a time.

Press Sweep, Sweep Time, 6200, µs (or 6.2, ms).

The screen display will now show several bursts in a single sweep as
shown in Figure 8-3 below. The burst power measurement will
measure the mean power of the first burst, indicated by the vertical
white lines either around it or, as in this example, within it.
Chapter 8 65

Measuring the Power of Digital Signals
Making Power Measurements on Burst Signals

M
ea

su
ri

n
g

th
e

P
ow

er
 o

f
D

ig
it

al
 S

ig
n

al
s

Figure 8-3 Displaying Multiple Bursts

NOTE Although the burst power measurement still runs correctly when
several bursts are displayed simultaneously, the timing accuracy of the
measurement is degraded. For the best results (including the best
trade-off between measurement variations and averaging time), it is
recommended that the measurement be performed on a single burst.
66 Chapter 8

Measuring the Power of Digital Signals
Making Statistical Power Measurements (CCDF)

M
easu

ring
 th

e P
ow

er o
f D

ig
ital S

ig
n

als
Making Statistical Power Measurements
(CCDF)
The following example shows how to make a CCDF measurement on a
W-CDMA signal broadcasting at 1.96 GHz.

1. Connect a W-CDMA signal to the analyzer input, preset the analyzer
and set:

2. Select the power statistics (CCDF) measurement

Press MEASURE, Power Stat CCDF.

3. Set the best attenuation and reference level for this measurement on
this signal.

Press Meas Setup, Optimize Ref Level.

Figure 8-4 Power Stat CCDF Measurement on a W-CDMA Signal

4. Store your current measurement trace for future reference.

Press Display, Store Ref Trace.

When the Power Stat CCDF measurement is first made, the
graphical display should show a signal typical of pure noise. This is

• Mode:

• Mode setup, radio standard:

• Mode setup, std setup,
Device:

• Center Frequency:

Spectrum Analysis

3GPP W-CDMA

BTS

1.96 GHz
Chapter 8 67

Measuring the Power of Digital Signals
Making Statistical Power Measurements (CCDF)

M
ea

su
ri

n
g

th
e

P
ow

er
 o

f
D

ig
it

al
 S

ig
n

al
s

labelled ‘Gaussian’, and is shown in aqua. Your measurement will
show as a yellow plot. You have stored this measurement plot for
easy comparison with subsequent measurements.

5. Display the stored trace.

Press Display, Ref Trace (On). The stored trace from your last
measurement is displayed as a magenta plot (as shown in Figure
8-5), and allows direct comparison with your current measurement.

Figure 8-5 Storing and Displaying a Power Stat CCDF Measurement

6. Change the measurement bandwidth to 1 MHz.

Press Meas Setup, Meas BW, 1, MHz.

NOTE If you choose a measurement bandwidth setting that the instrument
cannot display, it will automatically set itself to the closest available
bandwidth setting.
68 Chapter 8

Measuring the Power of Digital Signals
Making Statistical Power Measurements (CCDF)

M
easu

ring
 th

e P
ow

er o
f D

ig
ital S

ig
n

als
7. Change the number of measured points from 100,000 (100k) to 1,000
(1k).

Press Meas Setup, Counts, 1 kpoints. Reducing the number of points
decreases the measurement time, however the number of points is a
factor in determining measurement uncertainty and repeatability.
Notice how the displayed plot loses a lot of its smoothness. You are
gaining speed but reducing repeatability and increasing
measurement uncertainty.

NOTE The number of plots collected per sweep is dependent on the sampling
rate and the measurement interval. The number of samples that have
been processed will be indicated at the top of the screen. The graphical
plot will also be updated so you will be able to see it getting smoother as
measurement uncertainty is reduced and repeatability improves.

Figure 8-6 Reducing the Number of Measurement Points to 1,000

8. Change the scale of the X-axis to optimize your particular
measurement.

Under Span X Scale, Scale/Div, 1, dB.
Chapter 8 69

Measuring the Power of Digital Signals
Making Measurements of Adjacent Channel Power (ACP)

M
ea

su
ri

n
g

th
e

P
ow

er
 o

f
D

ig
it

al
 S

ig
n

al
s

Making Measurements of Adjacent Channel
Power (ACP)
The following example shows how to make an ACP measurement on a
W-CDMA Base Station signal broadcasting at 1.96 GHz.

1. Connect a W-CDMA signal to the analyzer input, preset the analyzer
and set:

2. Select the Adjacent Channel Power measurement.

Press MEASURE, ACP.

3. Set the optimum signal reference level for this measurement.

Press Meas Setup, Optimize Ref Level. Your screen should now look
like Figure 8-7.

NOTE This optimization protects against input signal overloads, but does not
necessarily set the input attenuation for optimum measurement
dynamic range.

Figure 8-7 ACP Measurement on a Base Station W-CDMA Signal

The Frequency Offsets, Channel Integration Bandwidths, and Span

• Mode:

• Mode setup, radio standard:

• Mode setup, std setup:

• Center Frequency:

Spectrum Analysis

3GPP W-CDMA

BTS

1.96 GHz
70 Chapter 8

Measuring the Power of Digital Signals
Making Measurements of Adjacent Channel Power (ACP)

M
easu

ring
 th

e P
ow

er o
f D

ig
ital S

ig
n

als
settings can all be modified. They default to the relevant settings for
the radio standard you have currently selected.

Two vertical white lines indicate the bandwidth limits of the central
channel being measured.

Offsets A and B are designated by the adjacent pairs of red and
yellow lines, in this case: 5 MHz and 10 MHz from the center
frequency respectively.

4. Select the combined spectrum and bar graph view of the results.

Press Trace/View, Combined.

5. View the results using the full screen.

Press Display, Full Screen to display a larger view of the trace as
shown in Figure 8-8.

Figure 8-8 ACP Measurement in Full Screen Display

6. Define a new offset.

Press Meas Setup, Offset/Limits, Offset, C, Offset Freq (On), 15, MHz to
set a third pair of offset frequencies.

This third pair of offset frequencies will be offset by 15.0 MHz from
the center frequency and are shown on the screen as the third blue
bar graph from the central channel. An example screen with this
extra pair of frequencies is shown in Figure 8-9. Three further pairs
of offset frequencies (D, E and F) are available and are displayed
similarly.
Chapter 8 71

Measuring the Power of Digital Signals
Making Measurements of Adjacent Channel Power (ACP)

M
ea

su
ri

n
g

th
e

P
ow

er
 o

f
D

ig
it

al
 S

ig
n

al
s

Figure 8-9 Measuring a Third Adjacent Channel

7. Set pass/fail limits for each offset.

Press Offset (A), Neg Offset Limit, −55 dB, Pos Offset Limit, −55 dB,
Offset (B), Neg Offset Limit, −65 dB, Pos Offset Limit, −65 dB, Offset (C),
Neg Offset Limit, −65 dB, Pos Offset Limit, −65 dB.

8. Turn the limit test on.

Press Meas Setup, More, Limit Test (press until On is underlined) to
show the results as in Figure 8-10.

Offset A has passed, however Offsets B and C have failed. Failures
are identified by the red letter “F” next to the levels (dBc and dBm)
listed in the lower portion of the window called, “RMS Results”. The
offset bar graph is also shaded red to identify a failure.
72 Chapter 8

Measuring the Power of Digital Signals
Making Measurements of Adjacent Channel Power (ACP)

M
easu

ring
 th

e P
ow

er o
f D

ig
ital S

ig
n

als
Figure 8-10 Setting Offset Limits

NOTE You may increase the repeatability by increasing the sweep time.
Chapter 8 73

Measuring the Power of Digital Signals
Making Measurements of Multi-Carrier Power (MCP)

M
ea

su
ri

n
g

th
e

P
ow

er
 o

f
D

ig
it

al
 S

ig
n

al
s

Making Measurements of Multi-Carrier Power
(MCP)
The following example shows how to make an MCP measurement on
W-CDMA Base Station broadcasting 10 carriers. Eight carriers have
power present at the following frequencies:1.0225 GHz, 1.0175 GHz,
1.0125 GHz, 1.0075 GHz, 992.5 MHz, 987.5 MHz, 982.5 MHz, and 992.5
MHz. This measurement is available with no radio standard selected or
with any of the following radio standards: IS-95, J-STD-008, all
cdma2000 standards, or W-CDMA.

NOTE When Radio Std, None is selected you must manually set most
parameters required to perform this measurement. When selecting
Radio Std, W-CDMA 3GPP, these parameters are already set by the
analyzer.

1. Connect a W-CDMA signal to the analyzer input, preset the analyzer
and set:

2. Select the Multi-Carrier Power measurement.

Press MEASURE, Multi-Carrier Power.

3. Set the optimum signal reference level for this measurement.

Press Meas Setup, Optimize Ref Level.

4. Set the carrier number to 10.

Press Carrier Setup, Carriers, 1, 0, Enter.

5. Configure carrier 5 to have no power present.

Press Configure Carriers, Carrier, 5, Enter, Carrier Pwr Present, (Press to
underline No).

6. Repeat step 5, configuring carrier 6 to have no power present.

7. Display the results in full screen view. Refer to Figure 8-11.

 Press Display, Full Screen.

• Mode:

• Mode setup, radio standard:

• Mode setup, std setup,
Device:

• Center Frequency:

Spectrum Analysis

3GPP W-CDMA

BTS

1.0 GHz
74 Chapter 8

Measuring the Power of Digital Signals
Making Measurements of Multi-Carrier Power (MCP)

M
easu

ring
 th

e P
ow

er o
f D

ig
ital S

ig
n

als
Figure 8-11 MCP Measurement on 10 Base Station W-CDMA Carriers

In this example, the intermodulation falls outside the transmit
channels which are marked by the colored vertical lines. The white
set indicates the reference carrier. The red sets contain the carriers
with power present and the blue lines mark the carriers without
power present. Limits for the upper and lower offsets can also be set
as shown in the example: “Making Measurements of Adjacent
Channel Power (ACP)” on page 70.

8. View the results table of carriers 7-10.

Press Meas Setup, Carrier Result, 7, Enter.

9. View the results in a combined spectrum and bar graph. Refer to
Figure 8-12.

Press Trace/View, Combined.
Chapter 8 75

Measuring the Power of Digital Signals
Making Measurements of Multi-Carrier Power (MCP)

M
ea

su
ri

n
g

th
e

P
ow

er
 o

f
D

ig
it

al
 S

ig
n

al
s

Figure 8-12 Combined Spectrum and Bar Graph View

10.Save the results file to a disk.

Press File, Save, Type, Measurement Results, Save Now. The results
are stored in a comma separated values format to be viewed by any
personal computer spreadsheet application. All data shown on the
display is included in this file.
76 Chapter 8

U
sin

g
 E

xtern
al M

illim
eter M

ixers
(O

p
tio

n
 A

Y
Z

)

9 Using External Millimeter
Mixers (Option AYZ)
77

Using External Millimeter Mixers (Option AYZ)

U
si

ng
 E

xt
er

n
al

 M
ill

im
et

er
 M

ix
er

s
(O

p
ti

o
n

 A
Y

Z
)

External millimeter mixers can be used to extend the frequency range
of the spectrum analyzer. Agilent Technologies manufactures external
mixers that do not require biasing and cover frequency ranges from 18
GHz to 110 GHz. Other manufacturers sell mixers that extend the
range to 325 GHz, but may require biasing. The spectrum analyzer
supports both types of mixers.

This chapter provides the following examples:

• “Using Unpreselected Millimeter-wave Mixers” on page 79

When using unpreselected mixers, multiple mixing products will be
shown on the analyzer display. Signal identification is required to
interpret these results correctly.

The output of a harmonic mixer will contain the sum and difference
of the input signal with the LO and all of its harmonics. A signal is
displayed on the analyzer whenever the input signal and the
harmonic frequency of the LO differ by the defined IF (intermediate
frequency). As a result, within a single harmonic band, a single
input signal can produce multiple responses on the analyzer display,
only one of which is valid for the current displayed frequency range.

These responses come in pairs, where members of the valid response
pair are separated by 642.8 MHz. When the analyzer is using
negative mixing harmonics the right-most signal in the pair is the
correct response. For positive harmonics the left-most signal of the
pair is the correct response.

• “Using Preselected Millimeter-Wave Mixers” on page 83

Preselected mixers apply a tracking filter to the input signal before
sending it to the mixer. This makes the displayed results easier to
understand because it eliminates the multiple mixing products that
are displayed using unpreselected mixers.

You must align the frequency of the preselector filter to the tuned
frequency of the analyzer before making any measurements. This
must be done whenever the mixer is connected to a different
analyzer. The alignment should be checked periodically.
78 Chapter 9

Using External Millimeter Mixers (Option AYZ)
Using Unpreselected Millimeter-wave Mixers

U
sin

g
 E

xtern
al M

illim
eter M

ixers
(O

p
tio

n
 A

Y
Z

)

Using Unpreselected Millimeter-wave Mixers

1. Connect the signal source and harmonic mixer to the analyzer as
shown. In this example we will use an A Band harmonic mixer.

Figure 9-1 Setup with Unpreselected External Mixers

CAUTION The analyzer local oscillator output power is approximately. Be sure
that your external harmonic mixer can accommodate the power level
before connecting it to the analyzer.

NOTE Agilent 5061-5458 SMA type cables should be used to connect the mixer
IF and LO ports to the analyzer. Do not over-tighten the cables. The
maximum torque should not exceed 112 N-cm (10 in-lb.)

2. Preset the analyzer. Then set the source as following:

3. Select external mixing.

Press Input/Output, Input Mixer, Input Mixer (Ext).

Spectrum Analyzer

IF INPUT

1st LO OUTPUT

SIGNAL
SOURCE

RF Input

Agilent 11970 SERIES
HARMONIC MIXER

IF
LO

SMA Cable

SMA Cable

unpremix5

On a Signal Source

• Frequency:

• Amplitude:

• RF Output:

35 GHz

0 dBm

On
Chapter 9 79

Using External Millimeter Mixers (Option AYZ)
Using Unpreselected Millimeter-wave Mixers

U
si

ng
 E

xt
er

n
al

 M
ill

im
et

er
 M

ix
er

s
(O

p
ti

o
n

 A
Y

Z
)

The analyzer frequency band will be set to 26.5 – 40 GHz. Multiple
mixing products will be shown on the analyzer display. (Other
frequency bands could be accessed by pressing Ext Mix Band.)

TIP The Preset key will take you out of external mixing. If you have changed
many settings, pressing Auto Couple, Auto All returns most settings to
their defaults without exiting external mixing.

Figure 9-2 Measuring with Unpreselected External Mixer

4. Turn on the signal identification feature to identify the valid
responses. The default type of signal identification is Image
Suppress.

Press Input/Output, Input Mixer, Signal ID (On).

Now only the valid response (35 GHz) remains on the display. The
signal-identification routine can introduce slight amplitude errors.
This is indicated by the message Signal Ident On, Amptd Uncal.
80 Chapter 9

Using External Millimeter Mixers (Option AYZ)
Using Unpreselected Millimeter-wave Mixers

U
sin

g
 E

xtern
al M

illim
eter M

ixers
(O

p
tio

n
 A

Y
Z

)

Figure 9-3 Signal ID on with Unpreselected External Mixer

5. Put a marker on the valid signal and turn off signal identification
before making the final amplitude measurement.

Press Peak Search and Signal ID (Off). Then measure the signal
amplitude.

Entering Conversion-Loss Correction Data

You may want to correct your measurement for the conversion-loss of
the external harmonic mixer that you are using. The amplitude
correction feature can be used for this.

1. Press AMPLITUDE Y Scale, More, Corrections.

You must enter a set of amplitude correction values for the desired
frequency range. Select a correction set for use with external mixing.
Other is the recommended set to use. (Set Other to Yes.)

2. Press Edit to enter the conversion loss data for the mixer in use. On
the Agilent 11970 harmonic mixers, these values are listed on the
mixer.

The data consists of frequency/amplitude pairs. You can enter a
single average value for correction over the entire frequency band.
Or you can improve frequency response accuracy by entering
multiple correction points across the band. Up to 200 points may be
defined for each set.

3. Once the desired correction points are entered, you must turn on the
correction function. This will improve the display calibration.

Press Return, Apply Corrections (Yes) to activate the Other corrections.

Once you have entered the correction set, you should save the set in
Chapter 9 81

Using External Millimeter Mixers (Option AYZ)
Using Unpreselected Millimeter-wave Mixers

U
si

ng
 E

xt
er

n
al

 M
ill

im
et

er
 M

ix
er

s
(O

p
ti

o
n

 A
Y

Z
)

internal memory or on a floppy disk for future reference.

Setting Mixer Bias

The Agilent 11970 Series harmonic mixers do not require an external
bias current. Mixers that require bias can also be used. The conversion
loss calibration data for these mixers will be most accurate when the
correct bias conditions are applied. Set the bias as follows:

4. To measure a signal, access external mixing and set the band as
described in the above procedure.

5. To activate bias press Input/Output, Input Mixer, Mixer Config,
Mixer Bias (On). A +I or –I will appear in the display annotation
indicating bias is on.

6. Enter the desired bias current in mA.

WARNING The open-circuit bias voltage can be as great as ±3.5V through a
source resistance of 500 ohms. Such voltage levels may appear
when recalling an instrument state in which a bias setting has
been stored.

NOTE The bias value that appears on the analyzer display is expressed in
terms of short-circuit current (that is, the current that would flow if the
IF INPUT were shorted to ground). The actual current flowing into the
mixer will be less.
82 Chapter 9

Using External Millimeter Mixers (Option AYZ)
Using Preselected Millimeter-Wave Mixers

U
sin

g
 E

xtern
al M

illim
eter M

ixers
(O

p
tio

n
 A

Y
Z

)

Using Preselected Millimeter-Wave Mixers
For: Agilent 11974 Series Preselected Harmonic Mixers

Before measurements can be made, the preselecting filter inside the
harmonic mixer must be aligned so that it tracks the spectrum analyzer
frequency tuning.

1. Connect the signal source and preselected mixer to the analyzer as
shown.

Figure 9-4 Setup with Preselected External Mixers

Frequency Tracking Alignment

This procedure is used to align the frequency of the preselector filter in
the Agilent 11974 to the tuned frequency of the analyzer. This
procedure should be followed any time that the Agilent 11974 is
connected to a different analyzer. The calibration should be checked
periodically.

1. The Agilent 11974 rear-panel switches must be set to scale correctly
with the tune signal of the analyzer.

Set the switches labeled “Agilent 70907B” and “LEDS” to the ON
position, and the other two switches to the OFF position.

SIGNA
LSOURC
E

Spectrum Analyzer

Agilent 11974
Series Mixer

RF Input

LO IN

 Power Supply

1st LO
OUTPUT

IF
INPUT

PRE-SEL TUNE
OUT

Preselector
Power

TUNE
IN

POWER
SUPPLY

IF
OUT

SMA Cable

SMA Cable

premix5
Chapter 9 83

Using External Millimeter Mixers (Option AYZ)
Using Preselected Millimeter-Wave Mixers

U
si

ng
 E

xt
er

n
al

 M
ill

im
et

er
 M

ix
er

s
(O

p
ti

o
n

 A
Y

Z
)

2. Preset the analyzer. Then configure it for a preselected external
mixer.

Input/Output, Input Mixer (Ext), Mixer Config, Mixer Type (Presel)

3. Set the desired frequency band for your particular mixer.

Press ‘, Ext Mix Band, A, Q, U, or V.

4. Set the preselector adjustment to 0 MHz.

Press AMPLITUDE, Presel Adjust, 0, MHz.

5. Set the analyzer to zero span.

6. Set the analyzer center frequency to the value in Table 9-1, that is
for your mixer.

On the rear panel of the Agilent 11974, adjust the corresponding
potentiometer until one or both of the green LEDs are lit.

7. Change the analyzer center frequency to the value indicated in
Table 9-2 and again adjust the corresponding potentiometer on the
rear panel of the HP 11974 until one or both of the green LEDs are
lit.

8. Repeat steps 6 and 7 until the green LEDs are lit at both frequencies
without additional adjustments.

Table 9-1 Start Frequency Bias Adjustment

Harmonic
Mixer

Analyzer Center
Frequency

Mixer
Potentiometer

11974A 26.5 GHz “26.5 GHz Adjust”

11974Q 33.0 GHz “33.0 GHz Adjust”

11974U 40.0 GHz “40.0 GHz Adjust”

11974V 50.0 GHz “50.0 GHz Adjust”

Table 9-2 Stop Frequency Bias Adjustment

Harmonic
Mixer

Analyzer Center
Frequency

Mixer
Potentiometer

11974A 40.0 GHz “40.0 GHz Adjust”

11974Q 50.0 GHz “50.0 GHz Adjust”

11974U 60.0 GHz “60.0 GHz Adjust”

11974V 75.0 GHz “75.0 GHz Adjust”
84 Chapter 9

Using External Millimeter Mixers (Option AYZ)
Using Preselected Millimeter-Wave Mixers

U
sin

g
 E

xtern
al M

illim
eter M

ixers
(O

p
tio

n
 A

Y
Z

)

Making a Measurement

1. Configure the analyzer for preselected external mixing.

Press Input/Output, Input Mixer (Ext), Mixer Config, Mixer Type (Presel)

2. Use the Frequency Tracking Alignment procedure above to adjust
the tracking of the Agilent 11974 to the analyzer.

3. Select the desired mixing band. In this example, we will use an
Agilent 11974Q, 33.0 to 50.0 GHz mixer.

Input/Output, Input Mixer, Ext Mix Band, 33-50 GHz (Q)

TIP The Preset key will take you out of external mixing. If you have changed
many settings, pressing Auto Couple, Auto All returns most settings to
their defaults without exiting external mixing.

4. Set the source as following:

5. Enter the conversion-loss data for the mixer, to calibrate the
amplitude of the display. The conversion-loss versus frequency data
is on the calibration label on the bottom of the Agilent 11974, or on
the supplied calibration sheet.

Use the procedure “Entering Conversion-Loss Correction Data” on
page 81. The full Q-band is shown in Figure 9-5.

On a Signal Source

• Frequency:

• Amplitude:

• RF Output:

40 GHz

−15 dBm

On
Chapter 9 85

Using External Millimeter Mixers (Option AYZ)
Using Preselected Millimeter-Wave Mixers

U
si

ng
 E

xt
er

n
al

 M
ill

im
et

er
 M

ix
er

s
(O

p
ti

o
n

 A
Y

Z
)

Figure 9-5 Q-Band Measurement Display

6. An additional alignment of the preselector must be done at each
frequency of interest to optimize the amplitude calibration.

a. Place a marker on the signal of interest.

b. Zoom in on the signal by pressing: SPAN, Span Zoom, 10, MHz.

c. Center the preselector by pressing: AMPLITUDE, Presel Center.

The final amplitude measurement can now be read out with the
marker. See Figure 9-6.

Figure 9-6
86 Chapter 9

P
ro

g
ram

m
in

g
 E

xam
ples
10 Programming Examples
87

Programming Examples
Examples Included:

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
Examples Included:

• “Using Marker Peak Search” on page 90

• “Saving and Recalling Instrument State Data” on page 93

• “Making an ACPR Measurement in cdmaOne” on page 97

• “Performing Alignments and Getting Pass/Fail Results” on page 100

• “Saving Binary Trace Data” on page 103

• “Making a Power Calibration for a GSM Mobile Handset” on page
107

• “Using the CALCulate:DATA:COMPress? RMS Command” on page
114

• “Using C Over Socket LAN (UNIX)” on page 120

• “Using C Over Socket LAN (Windows NT)” on page 140

• “Using Java Programming Over Socket LAN” on page 143

• “Using the VXI Plug-N-Play Driver in LabVIEW®” on page 152

• “Using LabVIEW® 6 to Make an EDGE GSM Measurement” on
page 153

• “Using Visual Basic® 6 to Capture a Screen Image” on page 156

• “Using Visual Basic® 6 to Transfer Binary Trace Data” on page 160

• “Using Visual Basic® .NET with the IVI-Com Driver” on page 165

LabVIEW is a registered trademark of National Instruments
Corporation.

Visual Basic is a registered trademark of Microsoft Corporation.

About These Examples

• Many of the examples use the SCPI programming commands,
though there are some that use the plug&play or IVI.com drivers.

• Many of the examples are written for an IBM compatible PC.

• There are examples using GPIB and LAN.

• Most of the examples are written in C using the Agilent VISA
transition library.

The VISA transition library must be installed and the GPIB card
configured. The Agilent I/O libraries contain the latest VISA
transition library and is available at: www.agilent.com/iolib
88 Chapter 10

Programming Examples
Examples Included:

P
ro

g
ram

m
in

g
 E

xam
ples
Finding Additional Examples and More Information

These examples are available on the Agilent Technologies PSA Series
documentation CD-ROM. They are also available at the URL
http://www.agilent.com/find/psa

There are additional examples that use the VXI plug&play instrument
drivers. These examples are included in the on-line documentation in
the driver itself. The driver allows you to use several different
programming languages including: VEE, LabVIEW, C, C++, and
BASIC. The software driver can be found at the URL
http://www.agilent.com/find/psa

There are additional examples that use the IntuiLink software.
IntuiLink allows you to capture screen and trace data for display and
manipulation in the Windows COM environment. These examples are
included on the Intuilink CD. The latest version of IntuiLink can also
be found at the URL http://www.agilent.com/find/intuilink

There is some additional information about the basics of using the C
programming language in the C Programming Using VTL section in the
Programming Fundamentals chapter of the User’s and Programmer’s
Reference.
Chapter 10 89

Programming Examples
Using Marker Peak Search

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
Using Marker Peak Search
This C programming example (peaksrch.c) can be found on the
Documentation CD.

Example:

/**/

/* peaksrch.c */

/* Agilent Technologies 2001 */

/* */

/* Using Marker Peak Search and Peak Excursion */

/* */

/* This example is for the E444xA PSA Spectrum Analyzers */

/* */

/* This C programming example does the following. */

/* */

/* - Open a GPIB session at address 18 */

/* - Select Spectrum Analysis Mode */

/* - Reset & Clear the Analyzer */

/* - Set the analyzer center frequency and span */

/* - Set the input port to the 50 MHz amplitude reference */

/* - Set the analyzer to single sweep mode */

/* - Prompt the user for peak excursion level in dBm */

/* - Set the peak threshold to user defined level */

/* - Trigger a sweep and wait for sweep to complete */

/* - Set the marker to the maximum peak */

/* - Query and read the marker frequency and amplitude */

/* - Close the session */

/**/

#include <windows.h>

#include <stdio.h>

#include "visa.h"

ViSession defaultRM, viPSA;
90 Chapter 10

Programming Examples
Using Marker Peak Search

P
ro

g
ram

m
in

g
 E

xam
ples
ViStatus errStatus;

void main()

{

/*Program Variables*/

ViStatus viStatus = 0;

char cEnter = 0;

int iResult = 0;

double dMarkerFreq = 0;

double dMarkerAmpl = 0;

float fPeakExcursion =0;

long lOpc = 0L;

char *psaSetup = // PSA setup initialization

":INST SA;" // Change to Spectrum Analysis mode

 "*RST;*CLS;" // Reset the device and clear status

":SENS:FREQ:CENT 50 MHz;"// Set center freq to 50 MHz

":SENS:FREQ:SPAN 50 MHz;"// Set freq span to 50 MHz

":SENS:FEED AREF;"// Set input port to internal 50 MHz ref

":INIT:CONT 0;"// Set analyzer to single sweep mode

":CALC:MARK:PEAK:THR -90";// Set the peak thresold to -90 dBm

/*Open a GPIB session at address 18.*/

viStatus=viOpenDefaultRM(&defaultRM);

viStatus=viOpen(defaultRM,"GPIB0::18",VI_NULL,VI_NULL,&viPSA);

if(viStatus)

{

printf("Could not open a session to GPIB device at address 18!\n");

exit(0);

}

/*Display the program heading */

printf("\n\t\t Marker Program \n\n");

/* Send setup commands to instrument */
Chapter 10 91

Programming Examples
Using Marker Peak Search

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 viPrintf(viPSA,"%s\n",psaSetup);

/*User enters the peak excursion value */

printf("\t Enter PEAK EXCURSION level in dBm: ");

scanf("%f",&fPeakExcursion);

/*Set the peak excursion*/

viPrintf(viPSA,"CALC:MARK:PEAK:EXC %1fDB \n",fPeakExcursion);

/*Trigger a sweep and wait for completion*/

viPrintf(viPSA,"INIT:IMM;*WAI\n");

/*Set the marker to the maximum peak*/

viPrintf(viPSA,"CALC:MARK:MAX \n");

/*Query and read the marker frequency*/

viQueryf(viPSA,"CALC:MARK:X? \n","%lf",&dMarkerFreq);

printf("\n\t RESULT: Marker Frequency is: %lf MHz \n\n",dMarkerFreq/10e5);

/*Query and read the marker amplitude*/

viQueryf(viPSA,"CALC:MARK:Y?\n","%lf",&dMarkerAmpl);

printf("\t RESULT: Marker Amplitude is: %lf dBm \n\n",dMarkerAmpl);

/*Close the session*/

viClose(viPSA);

viClose(defaultRM);

}
92 Chapter 10

Programming Examples
Saving and Recalling Instrument State Data

P
ro

g
ram

m
in

g
 E

xam
ples
Saving and Recalling Instrument State Data
This C programming example (State.c) can be found on the
Documentation CD.

Example:

/***

* State.c

* Agilent Technologies 2001

*

* PSA Series Transmitter Tester using VISA for I/O

* This program shows how to save and recall a state of the instrument

*

***/

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include "visa.h"

void main ()

{

/*program variables*/

ViSession defaultRM, viVSA;

ViStatus viStatus= 0;

/*open session to GPIB device at address 18 */

viStatus=viOpenDefaultRM (&defaultRM);

viStatus=viOpen (defaultRM, "GPIB0::18::INSTR", VI_NULL,VI_NULL, &viVSA);

/*check opening session sucess*/

if(viStatus)

{

printf("Could not open a session to GPIB device at address 18!\n");

exit(0);

}

Chapter 10 93

Programming Examples
Saving and Recalling Instrument State Data

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
/*set the instrument to SA mode*/

 viPrintf(viVSA, "INST SA\n");

/*reset the instrument */

 viPrintf(viVSA, "*RST\n");

/*set the input port to the internal 50Mhz reference source*/

viPrintf(viVSA, "SENS:FEED AREF\n");

/*tune the analyzer to 50MHZ*/

viPrintf(viVSA, "SENS:FREQ:CENT 50E6\n");

/*change the span*/

viPrintf(viVSA, "SENS:FREQ:SPAN 10 MHZ\n");

/*turn the display line on*/

viPrintf(viVSA, "DISP:WIND:TRACE:Y:DLINE:STATE ON\n");

/*change the resolution bandwidth*/

viPrintf(viVSA, "SENS:SPEC:BAND:RES 100E3\n");

/*change the Y Axis Scale/Div*/

viPrintf(viVSA, "DISP:WIND:TRAC:Y:SCAL:PDIV 5\n");

/*Change the display refernece level*/

viPrintf(viVSA, "DISP:WIND:TRAC:Y:SCAL:RLEV -15\n");

/*trigger the instrument*/

viPrintf(viVSA, "INIT:IMM;*WAI\n");

/*save this state in register 10.

!!!Carefull this will overwrite register 10*/

viPrintf(viVSA, "*SAV 10\n");

/*display message*/
94 Chapter 10

Programming Examples
Saving and Recalling Instrument State Data

P
ro

g
ram

m
in

g
 E

xam
ples
printf("PSA Programming example showing *SAV,*RCL SCPI commands\n");

printf("used to save instrument state\n\t\t------------------------");

printf("\n\nThe instrument state has been saved to an internal register\n");

printf("Please observe the display and notice the signal shape\n");

printf("Then press any key to reset the
instrument\n\t\t------------------------");

/*wait for any key to be pressed*/

getch();

/*reset the instrument */

 viPrintf(viVSA, "*RST\n");

/*set again the input port to the internal 50Mhz reference source*/

viPrintf(viVSA, "SENS:FEED AREF\n");

/*display message*/

 printf("\n\nThe instrument was reset to the factory default setting\n");

printf("Notice the abscence of the signal on the display\n");

 printf("Press any key to recall the saved
state\n\t\t------------------------");

/*wait for any key to be pressed*/

getch();

/*recall the state saved in register 10*/

viPrintf(viVSA, "*RCL 10\n");

/*display message*/

printf("\n\nNotice the previous saved instrument settings were restored\n");

 printf("Press any key to terminate the
program\n\t\t------------------------\n\n");

/*wait for any key to be pressed*/

getch();
Chapter 10 95

Programming Examples
Saving and Recalling Instrument State Data

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
/*reset the instrument */

 viPrintf(viVSA, "*RST;*wai\n");

/*Set the instrument to continuous sweep */

 viPrintf(viVSA, "INIT:CONT 1\n");

/* close session */

viClose (viVSA);

viClose (defaultRM);

}

96 Chapter 10

Programming Examples
Making an ACPR Measurement in cdmaOne

P
ro

g
ram

m
in

g
 E

xam
ples
Making an ACPR Measurement in cdmaOne
This C programming example (ACPR.c) can be found on the
Documentation CD.

Example:

/***

* ACPR.c

* Adjacent Channel Power Measurement using Power Suite

* Agilent Technologies 2001

*

* Instrument Requirements:

* PSA with firmware version >= A.02.00 or

* ESA with firmware version >= A.08.00

*

* Note: You can select which ACPR radio standard you would like by

* changing the standard for the RADIO:STANDARD command.

* This example sets the radio standard to IS95.

*

* Note: For PSA, ensure that you are SA mode before running this program.

*

***/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "visa.h"

void main ()

{

/*program variable*/

ViSession defaultRM, viPSA;

ViStatus viStatus = 0;

ViChar _VI_FAR cResult[2000] = {0};

int iNum =0;

int iSwpPnts = 401;
Chapter 10 97

Programming Examples
Making an ACPR Measurement in cdmaOne

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
double freq,value;

static ViChar *cToken ;

long lCount=0L;

char sTraceInfo [1024]= {0};

FILE *fDataFile;

 unsigned long lBytesRetrieved;

char *psaSetup = // PSA setup initialization

"*RST;*CLS;" // Reset the device and clear status

":INIT:CONT 0;"// Set analyzer to single sweep mode

":RADIO:STANDARD IS95";// Set the Radio Standard to IS95

/*open session to GPIB device at address 18 */

viStatus=viOpenDefaultRM (&defaultRM);

viStatus=viOpen (defaultRM, "GPIB0::18::INSTR", VI_NULL,VI_NULL, &viPSA);

/*check opening session sucess*/

if(viStatus)

{

printf("Could not open a session to GPIB device at address 18!\n");

exit(0);

}

/*Increase timeout to 20 sec*/

viSetAttribute(viPSA,VI_ATTR_TMO_VALUE,20000);

/*Send setup commands to instrument */

 viPrintf(viPSA,"%s\n",psaSetup);

/*Get the center freq from user*/

printf("What is the center carrier frequency in MHz?\n");

scanf("%lf",&freq);

/*Set the center freq*/

viPrintf(viPSA,"freq:center %lf MHZ\n",freq);

/*Perform an ACPR measurement*/

viQueryf(viPSA,"%s\n", "%#t","READ:ACP?;*wai" , &iNum , cResult);
98 Chapter 10

Programming Examples
Making an ACPR Measurement in cdmaOne

P
ro

g
ram

m
in

g
 E

xam
ples
/*Remove the "," from the ASCII data for analyzing data*/

cToken = strtok(cResult,",");

/*Save data to an ASCII to a file, by removing the "," token*/

fDataFile=fopen("C:\\ACPR.txt","w");

fprintf(fDataFile,"ACPR.exe Output\nAgilent Technologies 2001\n\n");

fprintf(fDataFile,"Please read Programer’s Reference for an\n");

fprintf(fDataFile,"explanation of returned results.\n\n");

while (cToken != NULL)

{

lCount++;

value = atof(cToken);

fprintf(fDataFile,"\tReturn value[%d] = %lf\n",lCount,value);

cToken =strtok(NULL,",");

 }

fprintf(fDataFile,"\nTotal number of return points of ACPR measurement :[%d]
\n\n",lCount);

fclose(fDataFile);

/*print message to the standard output*/

printf("The The ACPR Measurement Result was saved to C:\\ACPR.txt file\n\n");

/* Close session */

viClose (viPSA);

viClose (defaultRM);

}

Chapter 10 99

Programming Examples
Performing Alignments and Getting Pass/Fail Results

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
Performing Alignments and Getting Pass/Fail
Results
This C programming example (SerAlign.c) can be found on the
Documentation CD.

Example:

/***

* SerAlign.c

* Serial Poll Alignment Routine

* Agilent Technologies 2001

*

* Instrument Requirements:

* PSA Series Spectrum Analyzer or

* ESA Series Spectrum Analyers or

* VSA Series Transmitter Tester

*

* This program demonstrates how to

* 1) Perform an instrument alignment.

* 2) Poll the instrument to determine when the operation is complete.

* 3) Query to determine if the alignment was successfuly completed.

*

**/

#include <stdio.h>

#include <stdlib.h>

#include <windows.h>

#include "visa.h"

void main ()

{

/*program variables*/

ViSession defaultRM, viPSA;

ViStatus viStatus = 0;

ViUInt16 esr,stat;

long lResult = 0;
100 Chapter 10

Programming Examples
Performing Alignments and Getting Pass/Fail Results

P
ro

g
ram

m
in

g
 E

xam
ples
long lOpc = 0;

char cEnter = 0;

/*open session to GPIB device at address 18 */

viStatus=viOpenDefaultRM (&defaultRM);

viStatus=viOpen (defaultRM, "GPIB0::18::INSTR", VI_NULL,VI_NULL,&viPSA);

/*check opening session sucess*/

if(viStatus)

{

printf("Could not open a session to GPIB device at address 18!\n");

exit(0);

}

/*increase timeout to 60 sec*/

viSetAttribute(viPSA,VI_ATTR_TMO_VALUE,60000);

/*Clear the analyzer*/

viClear(viPSA);

/*Clear all event registers*/

 viPrintf(viPSA, "*CLS\n");

/* Set the Status Event Enable Register */

viPrintf(viPSA, "*ESE 1\n");

/*Initiate self-alignment*/

viPrintf(viPSA, "CAL:ALL\n");

/* Send the Operation complete command so that the

 stand event register will be set to 1 once

 the pending alignment command is complete */

viPrintf(viPSA, "*OPC\n");

/* print message to standard output */

printf("Performing self-alignment.\n");
Chapter 10 101

Programming Examples
Performing Alignments and Getting Pass/Fail Results

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
/* Serial pole the instrument for operation complete */

while(1)

{

viQueryf(viPSA,"*ESR?\n","%ld",&esr);

printf(".");

if (esr & 1) break;//look for operation complete bit

Sleep (1000);// wait 1000ms before polling again

}

/* Query the Status Questionable Condition Register */

viQueryf(viPSA,":STAT:QUES:CAL:COND?\n","%ld",&stat);

/*Determine if alignment was successful*/

if (stat)

printf("\nAlignment not successful\n\n");

else

printf("\nAlignment successful\n\n");

/*reset timeout to 5 sec*/

viSetAttribute(viPSA,VI_ATTR_TMO_VALUE,5000);

/*print message to the standard output*/

printf("Press Return to exit program \n\n");

scanf("%c",&cEnter);

/* Close session */

viClose (viPSA);

viClose (defaultRM);

}

102 Chapter 10

Programming Examples
Saving Binary Trace Data

P
ro

g
ram

m
in

g
 E

xam
ples
Saving Binary Trace Data
This C programming example (Trace.c) can be found on the
Documentation CD.

This example uses Option B7J.

Example:

/***

* Trace.c

* Agilent Technologies 2001

*

* Instrument Requirements:

* E444xA with option B7J and firmware version >= A.02.00 or

* E4406A with firmware version >= A.05.00

*

* This Program shows how to get and save binary trace data in Basic mode

* The results are saved to C:\trace.txt

***/

#include <stdio.h>

#include <stdlib.h>

#include <windows.h>

#include "visa.h"

void main ()

{

/*program variable*/

ViSession defaultRM, viPSA;

ViStatus viStatus= 0;

char sBuffer[80]= {0};

char dummyvar;

FILE *fTraceFile;

long lNumberPoints= 0;

long lNumberBytes= 0;

long lLength= 0;

long i = 0;
Chapter 10 103

Programming Examples
Saving Binary Trace Data

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
long lOpc = 0L;

unsigned long lBytesRetrieved;

ViReal64 adTraceArray[10240];

char *psaSetup =/* setup commands for VSA/PSA */

":INST BASIC;"/* Set the instrument mode to Basic */

"*RST;*CLS;"/* Reset the device and clear status */

":INIT:CONT 0;"/* Set analyzer to single measurement mode */

":FEED AREF;"/* set the input port to the internal

50MHz reference source */

":DISP:FORM:ZOOM1;"/* zoom the spectrum display */

":FREQ:CENT 50E6;"/* tune the analyzer to 50MHz */

":FORM REAL,64;"/* Set the ouput format to a binary format */

":FORM:BORD SWAP;"/* set the binary byte order to SWAP (for PC) */

":INIT:IMM;";/* trigger a spectrum measurement */

 /*open session to GPIB device at address 18 */

viStatus=viOpenDefaultRM (&defaultRM);

viStatus=viOpen (defaultRM, "GPIB0::18::INSTR", VI_NULL,VI_NULL, &viPSA);

/*check opening session sucess*/

if(viStatus)

{

printf("Could not open a session to GPIB device at address 18!\n");

exit(0);

}

/* Set I/O timeout to ten seconds */

 viSetAttribute(viPSA,VI_ATTR_TMO_VALUE,10000);

/* Send setup commands to instrument */

viPrintf(viPSA,"%s\n",vsaSetup);

/* Query the instrument for Operation complete */

viQueryf(viPSA,"*OPC?\n", "%d", &lOpc);
104 Chapter 10

Programming Examples
Saving Binary Trace Data

P
ro

g
ram

m
in

g
 E

xam
ples
/* fetch the spectrum trace data*/

viPrintf(viPSA,"FETC:SPEC7?\n");

/*print message to the standard output*/

printf("Getting the spectrum trace in binary format...\nPlease wait...\n\n");

/* get number of bytes in length of postceeding trace data

 and put this in sBuffer*/

viRead (viPSA,(ViBuf)sBuffer,2,&lBytesRetrieved);

/* Put the trace data into sBuffer */

viRead (viPSA,(ViBuf)sBuffer,sBuffer[1] - ’0’,&lBytesRetrieved);

/* append a null to sBuffer */

sBuffer[lBytesRetrieved] = 0;

/* convert sBuffer from ASCII to integer */

lNumberBytes = atoi(sBuffer);

/* calculate the number of points given the number of byte in the trace

 REAL 64 binary format means each number is represented by 8 bytes*/

lNumberPoints = lNumberBytes/sizeof(ViReal64);

/*get and save trace in data array */

viRead (viPSA,(ViBuf)adTraceArray,lNumberBytes,&lBytesRetrieved);

/* read the terminator character and discard */

viRead (viPSA,(ViBuf)sBuffer,1, &lLength);

/*print message to the standard output*/

printf("Querying instrument to see if any errors in Queue.\n");

/* loop until all errors read */

do

{

viPrintf (viPSA,"SYST:ERR?\n");/* check for errors */
Chapter 10 105

Programming Examples
Saving Binary Trace Data

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
viRead (viPSA,(ViBuf)sBuffer,80,&lLength);/* read back last error message
*/

sBuffer[lLength] = 0; /* append a null to byte count */

printf("%s\n",sBuffer); /* print error buffer to display */

} while (sBuffer[1] != ’0’);

/* set the analyzer to continuous mode for manual use */

viPrintf(viPSA, "INIT:CONT 1\n");

/*save trace data to an ASCII file*/

fTraceFile=fopen("C:\\Trace.txt","w");

fprintf(fTraceFile,"Trace.exe Output\nAgilent Technologies 2001\n\n");

fprintf(fTraceFile,"List of %d points of the averaged spectrum
trace:\n\n",lNumberPoints);

for (i=0;i<lNumberPoints;i++)

 fprintf(fTraceFile,"\tAmplitude of point[%d] = %.2lf
dBm\n",i+1,adTraceArray[i]);

fclose(fTraceFile);

/*print message to the standard output*/

printf("The %d trace points were saved to C:\\Trace.txt
file\n\n",lNumberPoints);

/* Send message to standard output */

printf("\nPress Enter to set analyzer’s input port back to RF.\n");

scanf("%c",&dummyvar);

/* set the input port to RF */

viPrintf(viPSA, "feed rf\n");

/* Close session */

viClose (viPSA);

viClose (defaultRM);

}

106 Chapter 10

Programming Examples
Making a Power Calibration for a GSM Mobile Handset

P
ro

g
ram

m
in

g
 E

xam
ples
Making a Power Calibration for a GSM Mobile
Handset
This C programming example (powercal.c) can be found on the
Documentation CD.

This program uses Basic mode which is optional -B7J- in the PSA
Series spectrum analyzers and is standard in the E4406A Vector Signal
Analyzer. It uses the Waveform measurement with the
CALC:DATA2:COMP? DME command to return the power of 75
consecutive GSM/EDGE bursts. The DME (dB Mean) parameter
returns the average of the dB trace values. The DME parameter is only
available in later version of instrument firmware ≥ A.05.00 for PSA and
≥ A.07.00 for VSA. Earlier instruments see the “Using the
CALCulate:DATA:COMPress? RMS Command” example.

This program also demonstrates how to serial poll the "Waiting for
Trigger" status bit to determine when to initiate the GSM phone. The
data results are placed in an ASCII file (powercal.txt).

The program can also be adapted to perform W-CDMA Downlink Power
Control measurements in the code domain power Symbol Power view.
In essence, you can average any stepped power measurement trace
using this method.

Example:

/**

* powercal.c

* Agilent Technologies 2003

*

* This program demonstrates the process of using the Waveform

* measurement and the CALC:DATA2:COMP? DME command to return the power

* of 75 consecutive GSM/EDGE bursts.

* The DME (db Mean) parameter returns the average of the dB trace values.

*

* This program also demonstrates how to serial poll the "Waiting

* for Trigger" Status bit to determine when to initiate the GSM phone

* The data results are placed in an ASCII file, powercal.txt

*

* This program can also be adapted to perform W-CDMA Downlink PowerControl

* measurements in the Code Domain Power Symbol Power View. In essence,

* you can average any stepped power measurement trace using this method.
Chapter 10 107

Programming Examples
Making a Power Calibration for a GSM Mobile Handset

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
*

* Instrument Requirements:

* E444xA with option B7J and firmware version >= A.05.00 or

* E4406A with firmware version >= A.07.00 or

*

* Signal Source Setup:

* Set up GSM/EDGE frame for either 1, 2, 4, or eight slots per frame.

* When configuring two slots per frame, turn on slots 1 and 5

* When configuring four slots per frame, turn on slots 1,3,5, and 7.

* Set frame repeat to Single.

* Set the signal amplitude to -5 dBm.

* Set the signal source frequency to 935.2 MHz

*

* CALC:DATA2:COMP? DME parameters:

* soffset = 25us (This avoids averaging data points when the burst

* is transitioning on.)

* length = 526us (Period over which the power of the burst is averaged)

* roffset = 4.6153846 ms / slots per frame (Repitition interval of burst)

**
****/

#include <stdio.h>

#include <stdlib.h>

#include <windows.h>

#include <math.h>

#include "c:\program files\visa\winnt\include\visa.h"

void main ()

{

/*program variable*/

ViSession defaultRM, viVSA;

ViStatus viStatus= 0;

ViUInt16 stb;

FILE *fDataFile;

long lthrowaway,lbursts;

long lNumberPoints= 0;

long lNumberBytes= 0;
108 Chapter 10

Programming Examples
Making a Power Calibration for a GSM Mobile Handset

P
ro

g
ram

m
in

g
 E

xam
ples
long lLength = 0;

long i = 0;

long lOpc = 0L;

double sweeptime = 0;

double burstinterval= 0;

unsigned long lBytesRetrieved;

ViReal64 adDataArray[100];

char sBuffer[80]= {0};

char *basicSetup = // measurement setup commands for VSA/PSA

":INST:SEL BASIC;"// Put the instrument in Basic Mode

 "*RST; "// Preset the instrument

"*CLS; "//Clear the status byte

":STAT:OPER:ENAB 32;" //Enable Status Operation

":DISP:ENAB 0;"// Turn the Display off (improves Speed)

":FORM REAL,64;"// Set the ouput format to binary

":FORM:BORD SWAP;"// set the binary byte order to SWAP (for PC)

":CONF:WAV;"// Changes measurement to Waveform

":INIT:CONT 0;"// Puts instrument in single measurement mode

":CAL:AUTO OFF;"//Turn auto align off

":FREQ:CENTER 935.2MHz;"//Set Center Freq to 935.2MHz

":WAV:ACQ:PACK MED;"//Set DataPacking to Medium

":WAV:BAND:TYPE FLAT;"//Select Flattop RBW Filter

":WAV:DEC:FACT 4;"//Set Decimation Factor to 4

":WAV:DEC:STAT ON;"//Turn Decimation On

":DISP:WAV:WIND1:TRAC:Y:RLEV 5;" //Set referance level to 5 dBm

":WAV:BWID:RES 300kHz;"//Set Res bandwith filter to 300kHz

":POW:RF:ATT 5;"//Set 5dB of internal attenuation

":WAV:ADC:RANG P0;"//Set ADC Range to P0, This is

//necessary to prevent autoranging

":WAV:TRIG:SOUR IF;"//Set Trigger source to IF burst

":TRIG:SEQ:IF:LEV -20;";//Set IF Trig level to -20dB

/*open session to GPIB device at address 18 */

viStatus=viOpenDefaultRM (&defaultRM);

viStatus=viOpen (defaultRM, "GPIB0::18", VI_NULL,VI_NULL,&viVSA);
Chapter 10 109

Programming Examples
Making a Power Calibration for a GSM Mobile Handset

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
/*check opening session sucess*/

if(viStatus)

{

printf("Could not open a session to GPIB device at address 18!\n");

exit(0);

}

/* Set I/O timeout to ten seconds */

 viSetAttribute(viVSA,VI_ATTR_TMO_VALUE,10000);

viClear(viVSA);//send device clear to instrument

/*print message to the standard output*/

printf("Enter number of bursts per frame (1,2,4 or 8): ");

scanf("%ld",&lbursts);

/* Send setup commands to instrument */

 viPrintf(viVSA,"%s\n",basicSetup);

/* Calculate sweep time and set it*/

burstinterval = 4.6153846 / 1000.00 / lbursts;

sweeptime= burstinterval * 75.0;

viPrintf(viVSA,":WAV:SWE:TIME %fs\n",sweeptime);

/* Clear status event register */

viQueryf(viVSA,"STAT:OPER:EVENT?\n","%ld",<hrowaway);

/* Initiate the waveform measurement and get the instrument ready

 to calculate the mean RMS I/Q voltage in each burst

 (We will convert these discreate values into Mean dBm Power values) */

viPrintf(viVSA,"INIT:IMM\n");

/* Serial poll the instrument to determine when it is waiting for
110 Chapter 10

Programming Examples
Making a Power Calibration for a GSM Mobile Handset

P
ro

g
ram

m
in

g
 E

xam
ples
 trigger and the GSM phone can be told to send its 75 bursts. */

while(1)

{

viReadSTB(viVSA,&stb); //read status byte

if (stb & 128) break; //look for "waiting for trigger" bit

printf("Waiting on Analyzer...\n");

Sleep (50); // wait 50 ms between each serial poll

}

/*print message to the standard output*/

printf("Analyzer is Ready!\n\nWaiting for phone to trigger...\n\n");

/*Querry for Operation Complete */

viQueryf(viVSA,"*OPC?\n", "%d", &lOpc);

 /*Use the CALC:DATA0:COMP command to return the average power in each burst*/

viPrintf(viVSA,":CALC:DATA2:COMP? DME,25E-6,526E-6,%f\n",burstinterval);

/* get number of bytes in length of postceeding data and put this in sBuffer*/

viRead (viVSA,(ViBuf)sBuffer,2,&lBytesRetrieved);

printf("Getting the burst data in binary format...\n\n");

/* Put the returned data into sBuffer */

viRead (viVSA,(ViBuf)sBuffer,sBuffer[1] - ’0’,&lBytesRetrieved);

/* append a null to sBuffer */

sBuffer[lBytesRetrieved] = 0;

/* convert sBuffer from ASCII to integer */

lNumberBytes = atoi(sBuffer);

/*calculate the number of returned values given the number of bytes.

 REAL 64 binary data means each number is represented by 8 bytes */

 lNumberPoints = lNumberBytes/sizeof(ViReal64);

/*get and save returned data into an array */
Chapter 10 111

Programming Examples
Making a Power Calibration for a GSM Mobile Handset

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
viRead (viVSA,(ViBuf)adDataArray,lNumberBytes,&lBytesRetrieved);

/* read the terminator character and discard */

viRead (viVSA,(ViBuf)sBuffer,1, <hrowaway);

/*print message to the standard output*/

printf("Querying instrument to see if any errors in Queue.\n");

/* loop until all errors read */

do

{

 viPrintf (viVSA,"SYST:ERR?\n"); /* check for errors */

 viRead (viVSA,(ViBuf)sBuffer,80,&lLength);/* read back last error message */

 sBuffer[lLength] = 0; /* append a null to byte count */

 printf("%s\n",sBuffer); /* print error buffer to display */

} while (sBuffer[1] != ’0’);

/* Turn the Display of the instrument back on */

viPrintf(viVSA,"DISP:ENAB 1\n");

/*save result data to an ASCII file*/

fDataFile=fopen("powercal.txt","w");

fprintf(fDataFile,"powercal.exe Output\nAgilent Technologies 2003\n\n");

fprintf(fDataFile,"Power of %d GSM/EDGE bursts:\n",lNumberPoints);

fprintf(fDataFile,"(%d burst(s) per frame):\n\n",lbursts);

for (i=0;i<lNumberPoints;i++)

{

fprintf(fDataFile,"\tPower of burst[%d] = %.2lf dBm\n",i+1,adDataArray[i]);

}

fclose(fDataFile);

/*print message to the standard output*/

printf("The %d burst powers were saved to powercal.txt
file.\n\n",lNumberPoints);

viClose (viVSA);

viClose (defaultRM);
112 Chapter 10

Programming Examples
Making a Power Calibration for a GSM Mobile Handset

P
ro

g
ram

m
in

g
 E

xam
ples
}

Chapter 10 113

Programming Examples
Using the CALCulate:DATA:COMPress? RMS Command

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
Using the CALCulate:DATA:COMPress? RMS
Command
This C programming example (calcomp.c) can be found on the
Documentation CD.

This program uses the CALCulate:DATA:COMPress? RMS command to
average the voltage trace data to calculate power of consecutive GSM
bursts. Older instrument firmware does not support the newer DME
parameter described in the previous example. You will have to use the
technique in this example to calculate the dB mean. This example uses
the Waveform measurement in the Basic mode. Basic mode is optional
-B7J- in the PSA Series spectrum analyzers and is standard in the
E4406A Vector Signal Analyzer.

The CALC:DATA2:COMP? RMS command is used to return the power of 1
to 150 consecutive GSM/EDGE bursts. The RMS parameter returns the
average of the voltage trace values. These measured values are then
converted to dBm values.

This program also demonstrates how to serial poll Serial poll the
instrument to determine when the Message Available status bit is set.

Example:

/**
calcomp.c

* Agilent Technologies 2001

*

* This program demonstrates the process of using the Waveform

* measurement and the CALC:DATA0:COMP? RMS command to return the power

* of 1 to 450 consecutive GSM/EDGE bursts (one burst per frame).

* The data results are placed in an ASCII file, C:\calccomp.txt

*

* Instrument Requirements:

* E444xA with option B7J and firmware version >= A.02.00 or

* E4406A with firmware version >= A.05.00 or

*

* Signal Source Setup:

* Turn on 1 slot per GSM/EDGE frame.

* Set frame repeat to Continous.

* Set the signal amplitude to -5 dBm.
114 Chapter 10

Programming Examples
Using the CALCulate:DATA:COMPress? RMS Command

P
ro

g
ram

m
in

g
 E

xam
ples
* Set the signal source frequency to 935.2 MHz

*

* CALC:DATA0:COMP? RMS parameters:

* soffset = 25us (This avoids averaging data points when the burst

* is transitioning on.)

* length = 526us (Period over which the power of the burst is averaged)

* roffset = 4.165 ms (Repition interval of burst. For this example

* it is equal to one GSM frame: 4.165 ms.)

***/

#include <stdio.h>

#include <stdlib.h>

#include <windows.h>

#include <math.h>

#include "visa.h"

void main ()

{

/*program variable*/

ViSession defaultRM, viPSA;

ViStatus viStatus= 0;

ViUInt16 stb;

FILE *fDataFile;

long lthrowaway,lbursts;

long lNumberPoints= 0;

long lNumberBytes= 0;

long lLength = 0;

long i = 0;

long lOpc = 0L;

double sweeptime = 0;

unsigned long lBytesRetrieved;

ViReal64 adDataArray[500];

ViReal64 adPowerArray[500];

char sBuffer[80]= {0};

char *basicSetup = // measurement setup commands for VSA/PSA

":INST:SEL BASIC;"// Put the instrument in Basic Mode
Chapter 10 115

Programming Examples
Using the CALCulate:DATA:COMPress? RMS Command

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 "*RST;"// Preset the instrument

"*CLS;" //Clear the status byte

":DISP:ENAB 0;"// Turn the Display off (improves Speed)

":FORM REAL,64;"// Set the ouput format to binary

":FORM:BORD SWAP;"// set the binary byte order to SWAP (for PC)

":CONF:WAV;"// Changes measurement to Waveform

":INIT:CONT 0;"// Puts instrument in single measurement mode

":CAL:AUTO OFF;"//Turn auto align off

":FREQ:CENTER 935.2MHz;"//Set Center Freq to 935.2MHz

":WAV:ACQ:PACK MED;"//Set DataPacking to Medium

":WAV:BAND:TYPE FLAT;"//Select Flattop RBW Filter

":WAV:DEC:FACT 4;"//Set Decimation Factor to 4

":WAV:DEC:STAT ON;"//Turn Decimation On

":DISP:WAV:WIND1:TRAC:Y:RLEV 5;" //Set referance level to 5 dBm

":WAV:BWID:RES 300kHz;"//Set Res bandwith filter to 300kHz

":POW:RF:ATT 5;"//Set 5dB of internal attenuation

":WAV:TRIG:SOUR IF;"//Set Trigger source to IF burst

":TRIG:SEQ:IF:LEV -20;";//Set IF Trig level to -20dB

/*open session to GPIB device at address 18 */

viStatus=viOpenDefaultRM (&defaultRM);

viStatus=viOpen (defaultRM, "GPIB0::18", VI_NULL,VI_NULL,&viPSA);

/*check opening session sucess*/

if(viStatus)

{

printf("Could not open a session to GPIB device at address 18!\n");

exit(0);

}

/* Set I/O timeout to ten seconds */

 viSetAttribute(viPSA,VI_ATTR_TMO_VALUE,10000);

viClear(viPSA);//send device clear to instrument

/*print message to the standard output*/
116 Chapter 10

Programming Examples
Using the CALCulate:DATA:COMPress? RMS Command

P
ro

g
ram

m
in

g
 E

xam
ples
printf("Enter number of bursts (1 to 450) to calculate mean power for: ");

scanf("%ld",&lbursts);

/* Send setup commands to instrument */

 viPrintf(viPSA,"%s\n",basicSetup);

/* Calculate sweep time and set it*/

sweeptime=4.6153846*lbursts;

viPrintf(viPSA,":WAV:SWE:TIME %fms\n",sweeptime);

/* Clear status event register */

viQueryf(viPSA,"STAT:OPER:EVENT?\n","%ld",<hrowaway);

/* Initiate the waveform measurement */

viPrintf(viPSA,"INIT:IMM\n");

/* Query the instrument for Operation complete */

viQueryf(viPSA,"*OPC?\n", "%d", &lOpc);

/* Have the instrument calculate the mean RMS I/Q voltage in each burst

 (We will convert these discreate values into Mean dBm Power values) */

viPrintf (viPSA, ":CALC:DATA0:COMP? rms,25E-6,526E-6,4.61538461538E-3\n");

/* Serial poll the instrument to determine when Message Available

 Status Bit is set. The instrument’s output buffer will then

 contain the measurement results*/

i=0;

while(1)

{

i++;

viReadSTB(viPSA,&stb); //read status byte

if (stb & 16) break; //look for message available bit

Sleep (20); // wait 100ms before polling again

}

/*print message to the standard output*/
Chapter 10 117

Programming Examples
Using the CALCulate:DATA:COMPress? RMS Command

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
printf("\nMessage Available statuts bit set after %ld serial poles.\n\n",i);

printf("Getting the burst data in binary format...\nPlease wait...\n\n");

/* get number of bytes in length of postceeding data

 and put this in sBuffer*/

viRead (viPSA,(ViBuf)sBuffer,2,&lBytesRetrieved);

/* Put the returned data into sBuffer */

viRead (viPSA,(ViBuf)sBuffer,sBuffer[1] - ’0’,&lBytesRetrieved);

/* append a null to sBuffer */

sBuffer[lBytesRetrieved] = 0;

/* convert sBuffer from ASCII to integer */

lNumberBytes = atoi(sBuffer);

/*calculate the number of returned values given the number of bytes.

 REAL 64 binary data means each number is represented by 8 bytes */

 lNumberPoints = lNumberBytes/sizeof(ViReal64);

/*get and save returned data into an array */

viRead (viPSA,(ViBuf)adDataArray,lNumberBytes,&lBytesRetrieved);

/* read the terminator character and discard */

viRead (viPSA,(ViBuf)sBuffer,1, <hrowaway);

/*print message to the standard output*/

printf("Querying instrument to see if any errors in Queue.\n");

/* loop until all errors read */

do

{

 viPrintf (viPSA,"SYST:ERR?\n"); /* check for errors */

 viRead (viPSA,(ViBuf)sBuffer,80,&lLength);/* read back last error message */

 sBuffer[lLength] = 0; /* append a null to byte count */

 printf("%s\n",sBuffer); /* print error buffer to display */
118 Chapter 10

Programming Examples
Using the CALCulate:DATA:COMPress? RMS Command

P
ro

g
ram

m
in

g
 E

xam
ples
} while (sBuffer[1] != ’0’);

/* Turn the Display of the instrument back on */

viPrintf(viPSA,"DISP:ENAB 1\n");

/*save result data to an ASCII file*/

fDataFile=fopen("C:\\calccomp.txt","w");

fprintf(fDataFile,"Calccomp.exe Output\nAgilent Technologies 2001\n\n");

fprintf(fDataFile,"Power of %d GSM/EDGE bursts:\n\n",lNumberPoints);

for (i=0;i<lNumberPoints;i++)

{

/* Convert RMS voltage for each burst to Mean Power in dBm */

adPowerArray[i]=10*log10(10*adDataArray[i]*adDataArray[i]);

fprintf(fDataFile,"\tPower of burst[%d] = %.2lf
dBm\n",i+1,adPowerArray[i]);

}

fclose(fDataFile);

/*print message to the standard output*/

printf("The %d burst powers were saved to C:\\calccomp.txt
file.\n\n",lNumberPoints);

viClose (viPSA);

viClose (defaultRM);

}

Chapter 10 119

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
Using C Over Socket LAN (UNIX)
This C programming example (socketio.c) compiles in the HP-UX UNIX
environment. It is portable to other UNIX environments with only
minor changes.

In UNIX, LAN communication via sockets is very similar to reading or
writing a file. The only difference is the openSocket() routine, which
uses a few network library routines to create the TCP/IP network
connection. Once this connection is created, the standard fread() and
fwrite() routines are used for network communication.

In Windows, the routines send() and recv() must be used, since
fread() and fwrite() may not work on sockets.

The program reads the analyzer’s host name from the command line,
followed by the SCPI command. It then opens a socket to the analyzer,
using port 5025, and sends the command. If the command appears to be
a query, the program queries the analyzer for a response, and prints the
response.

This example program can also be used as a utility to talk to your
analyzer from the command prompt on your UNIX workstation or
Windows 95 PC, or from within a script.

This program is also available on your documentation CD ROM.

Example:

 /***

 * $Header: socketio.c,v 1.5 96/10/04 20:29:32 roger Exp $

 * $Revision: 1.5 $

 * $Date: 96/10/04 20:29:32 $

 *

 * $Contributor: LSID, MID $

 *

 * $Description: Functions to talk to an Agilent E4440A spectrum

 * analyzer via TCP/IP. Uses command-line arguments.

 *

 * A TCP/IP connection to port 5025 is established and

 * the resultant file descriptor is used to "talk" to the

 * instrument using regular socket I/O mechanisms. $

 *

 *
120 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ram

m
in

g
 E

xam
ples
 *

 * E4440A Examples:

 *

 * Query the center frequency:

 * lanio 15.4.43.5 ’sens:freq:cent?’

 *

 * Query X and Y values of marker 1 and marker 2 (assumes they are on):

 * lanio myinst ’calc:spec:mark1:x?;y?; :calc:spec:mark2:x?;y?’

 *

 * Check for errors (gets one error):

 * lanio myinst ’syst:err?’

 *

 * Send a list of commands from a file, and number them:

 * cat scpi_cmds | lanio -n myinst

 *

 **

 *

 * This program compiles and runs under

 * - HP-UX 10.20 (UNIX), using HP cc or gcc:

 * + cc -Aa -O -o lanio lanio.c

 * + gcc -Wall -O -o lanio lanio.c

 *

 * - Windows 95, using Microsoft Visual C++ 4.0 Standard Edition

 * - Windows NT 3.51, using Microsoft Visual C++ 4.0

 * + Be sure to add WSOCK32.LIB to your list of libraries!

 * + Compile both lanio.c and getopt.c

 * + Consider re-naming the files to lanio.cpp and getopt.cpp

 *

 * Considerations:

 * - On UNIX systems, file I/O can be used on network sockets.

 * This makes programming very convenient, since routines like

 * getc(), fgets(), fscanf() and fprintf() can be used. These

 * routines typically use the lower level read() and write() calls.

 *

 * - In the Windows environment, file operations such as read(), write(),

 * and close() cannot be assumed to work correctly when applied to
Chapter 10 121

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 * sockets. Instead, the functions send() and recv() MUST be used.

 */

/* Support both Win32 and HP-UX UNIX environment */

#ifdef _WIN32 /* Visual C++ 4.0 will define this */

define WINSOCK

#endif

#ifndef WINSOCK

ifndef _HPUX_SOURCE

define _HPUX_SOURCE

endif

#endif

#include <stdio.h> /* for fprintf and NULL */

#include <string.h> /* for memcpy and memset */

#include <stdlib.h> /* for malloc(), atol() */

#include <errno.h> /* for strerror */

#ifdef WINSOCK

#include <windows.h>

ifndef _WINSOCKAPI_

include <winsock.h> // BSD-style socket functions

endif

#else /* UNIX with BSD sockets */

include <sys/socket.h> /* for connect and socket*/

include <netinet/in.h> /* for sockaddr_in */

include <netdb.h> /* for gethostbyname */

define SOCKET_ERROR (-1)

define INVALID_SOCKET (-1)
122 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ram

m
in

g
 E

xam
ples
 typedef int SOCKET;

#endif /* WINSOCK */

#ifdef WINSOCK

 /* Declared in getopt.c. See example programs disk. */

 extern char *optarg;

 extern int optind;

 extern int getopt(int argc, char * const argv[], const char* optstring);

#else

include <unistd.h> /* for getopt(3C) */

#endif

#define COMMAND_ERROR (1)

#define NO_CMD_ERROR (0)

#define SCPI_PORT 5025

#define INPUT_BUF_SIZE (64*1024)

/**

 * Display usage

 **/

static void usage(char *basename)

{

 fprintf(stderr,"Usage: %s [-nqu] <hostname> [<command>]\n", basename);

 fprintf(stderr," %s [-nqu] <hostname> < stdin\n", basename);

 fprintf(stderr," -n, number output lines\n");

 fprintf(stderr," -q, quiet; do NOT echo lines\n");

 fprintf(stderr," -e, show messages in error queue when done\n");

}

#ifdef WINSOCK

int init_winsock(void)
Chapter 10 123

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
{

 WORD wVersionRequested;

 WSADATA wsaData;

 int err;

 wVersionRequested = MAKEWORD(1, 1);

 wVersionRequested = MAKEWORD(2, 0);

 err = WSAStartup(wVersionRequested, &wsaData);

 if (err != 0) {

 /* Tell the user that we couldn’t find a useable */

 /* winsock.dll. */

 fprintf(stderr, "Cannot initialize Winsock 1.1.\n");

 return -1;

 }

 return 0;

}

int close_winsock(void)

{

 WSACleanup();

 return 0;

}

#endif /* WINSOCK */

/***

 *

 > $Function: openSocket$

 *

 * $Description: open a TCP/IP socket connection to the instrument $

 *

 * $Parameters: $

 * (const char *) hostname Network name of instrument.

 * This can be in dotted decimal notation.
124 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ram

m
in

g
 E

xam
ples
 * (int) portNumber The TCP/IP port to talk to.

 * Use 5025 for the SCPI port.

 *

 * $Return: (int) A file descriptor similar to open(1).$

 *

 * $Errors: returns -1 if anything goes wrong $

 *

 ***/

SOCKET openSocket(const char *hostname, int portNumber)

{

 struct hostent *hostPtr;

 struct sockaddr_in peeraddr_in;

 SOCKET s;

 memset(&peeraddr_in, 0, sizeof(struct sockaddr_in));

 /***/

 /* map the desired host name to internal form. */

 /***/

 hostPtr = gethostbyname(hostname);

 if (hostPtr == NULL)

 {

 fprintf(stderr,"unable to resolve hostname ’%s’\n", hostname);

 return INVALID_SOCKET;

 }

 /*******************/

 /* create a socket */

 /*******************/

 s = socket(AF_INET, SOCK_STREAM, 0);

 if (s == INVALID_SOCKET)

 {

 fprintf(stderr,"unable to create socket to ’%s’: %s\n",

 hostname, strerror(errno));

 return INVALID_SOCKET;
Chapter 10 125

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 }

 memcpy(&peeraddr_in.sin_addr.s_addr, hostPtr->h_addr, hostPtr->h_length);

 peeraddr_in.sin_family = AF_INET;

 peeraddr_in.sin_port = htons((unsigned short)portNumber);

 if (connect(s, (const struct sockaddr*)&peeraddr_in,

 sizeof(struct sockaddr_in)) == SOCKET_ERROR)

 {

 fprintf(stderr,"unable to create socket to ’%s’: %s\n",

 hostname, strerror(errno));

 return INVALID_SOCKET;

 }

 return s;

}

/***

 *

 > $Function: commandInstrument$

 *

 * $Description: send a SCPI command to the instrument.$

 *

 * $Parameters: $

 * (FILE *) file pointer associated with TCP/IP socket.

 * (const char *command) . . SCPI command string.

 * $Return: (char *) a pointer to the result string.

 *

 * $Errors: returns 0 if send fails $

 *

 ***/

int commandInstrument(SOCKET sock,

 const char *command)

{

126 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ram

m
in

g
 E

xam
ples
 int count;

 /* fprintf(stderr, "Sending \"%s\".\n", command); */

 if (strchr(command, ’\n’) == NULL) {

 fprintf(stderr, "Warning: missing newline on command %s.\n", command);

 }

 count = send(sock, command, strlen(command), 0);

 if (count == SOCKET_ERROR) {

 return COMMAND_ERROR;

 }

 return NO_CMD_ERROR;

}

/**

 * recv_line(): similar to fgets(), but uses recv()

 **/

char * recv_line(SOCKET sock, char * result, int maxLength)

{

#ifdef WINSOCK

 int cur_length = 0;

 int count;

 char * ptr = result;

 int err = 1;

 while (cur_length < maxLength) {

 /* Get a byte into ptr */

 count = recv(sock, ptr, 1, 0);

 /* If no chars to read, stop. */

 if (count < 1) {

 break;

 }

 cur_length += count;
Chapter 10 127

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 /* If we hit a newline, stop. */

 if (*ptr == ’\n’) {

 ptr++;

 err = 0;

 break;

 }

 ptr++;

 }

 *ptr = ’\0’;

 if (err) {

 return NULL;

 } else {

 return result;

 }

#else

 /***

 * Simpler UNIX version, using file I/O. recv() version works too.

 * This demonstrates how to use file I/O on sockets, in UNIX.

 ***/

 FILE * instFile;

 instFile = fdopen(sock, "r+");

 if (instFile == NULL)

 {

 fprintf(stderr, "Unable to create FILE * structure : %s\n",

 strerror(errno));

 exit(2);

 }

 return fgets(result, maxLength, instFile);

#endif

}

128 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ram

m
in

g
 E

xam
ples
/***

 *

 > $Function: queryInstrument$

 *

 * $Description: send a SCPI command to the instrument, return a response.$

 *

 * $Parameters: $

 * (FILE *) file pointer associated with TCP/IP socket.

 * (const char *command) . . SCPI command string.

 * (char *result) where to put the result.

 * (size_t) maxLength maximum size of result array in bytes.

 *

 * $Return: (long) The number of bytes in result buffer.

 *

 * $Errors: returns 0 if anything goes wrong. $

 *

 ***/

long queryInstrument(SOCKET sock,

 const char *command, char *result, size_t maxLength)

{

 long ch;

 char tmp_buf[8];

 long resultBytes = 0;

 int command_err;

 int count;

 /***

 * Send command to analyzer

 ***/

 command_err = commandInstrument(sock, command);

 if (command_err) return COMMAND_ERROR;

 /***

 * Read response from analyzer
Chapter 10 129

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 **/

 count = recv(sock, tmp_buf, 1, 0); /* read 1 char */

 ch = tmp_buf[0];

 if ((count < 1) || (ch == EOF) || (ch == ’\n’))

 {

 result = ’\0’; / null terminate result for ascii */

 return 0;

 }

 /* use a do-while so we can break out */

 do

 {

 if (ch == ’#’)

 {

 /* binary data encountered - figure out what it is */

 long numDigits;

 long numBytes = 0;

 /* char length[10]; */

 count = recv(sock, tmp_buf, 1, 0); /* read 1 char */

 ch = tmp_buf[0];

 if ((count < 1) || (ch == EOF)) break; /* End of file */

 if (ch < ’0’ || ch > ’9’) break; /* unexpected char */

 numDigits = ch - ’0’;

 if (numDigits)

 {

 /* read numDigits bytes into result string. */

 count = recv(sock, result, (int)numDigits, 0);

 result[count] = 0; /* null terminate */

 numBytes = atol(result);

 }

 if (numBytes)
130 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ram

m
in

g
 E

xam
ples
 {

 resultBytes = 0;

 /* Loop until we get all the bytes we requested. */

 /* Each call seems to return up to 1457 bytes, on HP-UX 9.05 */

 do {

 int rcount;

 rcount = recv(sock, result, (int)numBytes, 0);

 resultBytes += rcount;

 result += rcount; /* Advance pointer */

 } while (resultBytes < numBytes);

 /**

 * For LAN dumps, there is always an extra trailing newline

 * Since there is no EOI line. For ASCII dumps this is

 * great but for binary dumps, it is not needed.

 ***/

 if (resultBytes == numBytes)

 {

 char junk;

 count = recv(sock, &junk, 1, 0);

 }

 }

 else

 {

 /* indefinite block ... dump til we read only a line feed */

 do

 {

 if (recv_line(sock, result, maxLength) == NULL) break;

 if (strlen(result)==1 && *result == ’\n’) break;

 resultBytes += strlen(result);

 result += strlen(result);

 } while (1);

 }

 }

 else

 {
Chapter 10 131

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 /* ASCII response (not a binary block) */

 *result = (char)ch;

 if (recv_line(sock, result+1, maxLength-1) == NULL) return 0;

 /* REMOVE trailing newline, if present. And terminate string. */

 resultBytes = strlen(result);

 if (result[resultBytes-1] == ’\n’) resultBytes -= 1;

 result[resultBytes] = ’\0’;

 }

 } while (0);

 return resultBytes;

}

/***

 *

 > $Function: showErrors$

 *

 * $Description: Query the SCPI error queue, until empty. Print results. $

 *

 * $Return: (void)

 *

 ***/

void showErrors(SOCKET sock)

{

 const char * command = "SYST:ERR?\n";

 char result_str[256];

 do {

 queryInstrument(sock, command, result_str, sizeof(result_str)-1);

 /**

 * Typical result_str:
132 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ram

m
in

g
 E

xam
ples
 * -221,"Settings conflict; Frequency span reduced."

 * +0,"No error"

 * Don’t bother decoding.

 **/

 if (strncmp(result_str, "+0,", 3) == 0) {

 /* Matched +0,"No error" */

 break;

 }

 puts(result_str);

 } while (1);

}

/***

 *

 > $Function: isQuery$

 *

 * $Description: Test current SCPI command to see if it a query. $

 *

 * $Return: (unsigned char) . . . non-zero if command is a query. 0 if not.

 *

 ***/

unsigned char isQuery(char* cmd)

{

 unsigned char q = 0 ;

 char *query ;

 /***/

 /* if the command has a ’?’ in it, use queryInstrument. */

 /* otherwise, simply send the command. */

 /* Actually, we must a little more specific so that */

 /* marker value queries are treated as commands. */

 /* Example: SENS:FREQ:CENT (CALC1:MARK1:X?) */

 /***/

 if ((query = strchr(cmd,’?’)) != NULL)
Chapter 10 133

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 {

 /* Make sure we don’t have a marker value query, or

 * any command with a ’?’ followed by a ’)’ character.

 * This kind of command is not a query from our point of view.

 * The analyzer does the query internally, and uses the result.

 */

 query++ ; /* bump past ’?’ */

 while (*query)

 {

 if (*query == ’ ’) /* attempt to ignore white spc */

 query++ ;

 else break ;

 }

 if (*query != ’)’)

 {

 q = 1 ;

 }

 }

 return q ;

}

/***

 *

 > $Function: main$

 *

 * $Description: Read command line arguments, and talk to analyzer.

 Send query results to stdout. $

 *

 * $Return: (int) . . . non-zero if an error occurs

 *

 ***/

int main(int argc, char *argv[])

{

134 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ram

m
in

g
 E

xam
ples
 SOCKET instSock;

 char *charBuf = (char *) malloc(INPUT_BUF_SIZE);

 char *basename;

 int chr;

 char command[1024];

 char *destination;

 unsigned char quiet = 0;

 unsigned char show_errs = 0;

 int number = 0;

 basename = strrchr(argv[0], ’/’);

 if (basename != NULL)

 basename++ ;

 else

 basename = argv[0];

 while ((chr = getopt(argc,argv,"qune")) != EOF)

 switch (chr)

 {

 case ’q’: quiet = 1; break;

 case ’n’: number = 1; break ;

 case ’e’: show_errs = 1; break ;

 case ’u’:

 case ’?’: usage(basename); exit(1) ;

 }

 /* now look for hostname and optional <command> */

 if (optind < argc)

 {

 destination = argv[optind++] ;

 strcpy(command, "");

 if (optind < argc)

 {

 while (optind < argc) {

 /* <hostname> <command> provided; only one command string */
Chapter 10 135

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 strcat(command, argv[optind++]);

 if (optind < argc) {

 strcat(command, " ");

 } else {

 strcat(command, "\n");

 }

 }

 }

 else

 {

 /* Only <hostname> provided; input on <stdin> */

 strcpy(command, "");

 if (optind > argc)

 {

 usage(basename);

 exit(1);

 }

 }

 }

 else

 {

 /* no hostname! */

 usage(basename);

 exit(1);

 }

 /**/

 /* open a socket connection to the instrument */

 /**/

#ifdef WINSOCK

 if (init_winsock() != 0) {

 exit(1);

 }

#endif /* WINSOCK */
136 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ram

m
in

g
 E

xam
ples
 instSock = openSocket(destination, SCPI_PORT);

 if (instSock == INVALID_SOCKET) {

 fprintf(stderr, "Unable to open socket.\n");

 return 1;

 }

 /* fprintf(stderr, "Socket opened.\n"); */

 if (strlen(command) > 0)

 {

 /**/

 /* if the command has a ’?’ in it, use queryInstrument. */

 /* otherwise, simply send the command. */

 /**/

 if (isQuery(command))

 {

 long bufBytes;

 bufBytes = queryInstrument(instSock, command,

 charBuf, INPUT_BUF_SIZE);

 if (!quiet)

 {

 fwrite(charBuf, bufBytes, 1, stdout);

 fwrite("\n", 1, 1, stdout) ;

 fflush(stdout);

 }

 }

 else

 {

 commandInstrument(instSock, command);

 }

 }

 else

 {

 /* read a line from <stdin> */

 while (gets(charBuf) != NULL)

 {

 if (!strlen(charBuf))
Chapter 10 137

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 continue ;

 if (*charBuf == ’#’ || *charBuf == ’!’)

 continue ;

 strcat(charBuf, "\n");

 if (!quiet)

 {

 if (number)

 {

 char num[10];

 sprintf(num,"%d: ",number);

 fwrite(num, strlen(num), 1, stdout);

 }

 fwrite(charBuf, strlen(charBuf), 1, stdout) ;

 fflush(stdout);

 }

 if (isQuery(charBuf))

 {

 long bufBytes;

 /* Put the query response into the same buffer as the

 * command string appended after the null terminator.

 */

 bufBytes = queryInstrument(instSock, charBuf,

 charBuf + strlen(charBuf) + 1,

 INPUT_BUF_SIZE -strlen(charBuf));

 if (!quiet)

 {

 fwrite(" ", 2, 1, stdout) ;

 fwrite(charBuf + strlen(charBuf)+1, bufBytes, 1, stdout);

 fwrite("\n", 1, 1, stdout) ;

 fflush(stdout);

 }
138 Chapter 10

Programming Examples
Using C Over Socket LAN (UNIX)

P
ro

g
ram

m
in

g
 E

xam
ples
 }

 else

 {

 commandInstrument(instSock, charBuf);

 }

 if (number) number++;

 }

 }

 if (show_errs) {

 showErrors(instSock);

 }

#ifdef WINSOCK

 closesocket(instSock);

 close_winsock();

#else

 close(instSock);

#endif /* WINSOCK */

 return 0;

}

/* End of lanio.c */
Chapter 10 139

Programming Examples
Using C Over Socket LAN (Windows NT)

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
Using C Over Socket LAN (Windows NT)
This C programming example (getopt.c) compiles in the Windows NT
environment. In Windows, the routines send() and recv() must be
used, since fread() and fwrite() may not work on sockets.

The program reads the analyzer’s host name from the command line,
followed by the SCPI command. It then opens a socket to the analyzer,
using port 5025, and sends the command. If the command appears to be
a query, the program queries the analyzer for a response, and prints the
response.

This example program can also be used as a utility to talk to your
analyzer from the command prompt on your Windows NT PC, or from
within a script.

Example:

/***

 getopt(3C) getopt(3C)

 NAME

 getopt - get option letter from argument vector

 SYNOPSIS

 int getopt(int argc, char * const argv[], const char *optstring);

 extern char *optarg;

 extern int optind, opterr, optopt;

 DESCRIPTION

 getopt returns the next option letter in argv (starting from argv[1])

 that matches a letter in optstring. optstring is a string of

 recognized option letters; if a letter is followed by a colon, the

 option is expected to have an argument that may or may not be

 separated from it by white space. optarg is set to point to the start

 of the option argument on return from getopt.
140 Chapter 10

Programming Examples
Using C Over Socket LAN (Windows NT)

P
ro

g
ram

m
in

g
 E

xam
ples
 getopt places in optind the argv index of the next argument to be

 processed. The external variable optind is initialized to 1 before

 the first call to the function getopt.

 When all options have been processed (i.e., up to the first non-option

 argument), getopt returns EOF. The special option -- can be used to

 delimit the end of the options; EOF is returned, and -- is skipped.

 ***/

#include <stdio.h> /* For NULL, EOF */

#include <string.h> /* For strchr() */

char *optarg; /* Global argument pointer. */

int optind = 0; /* Global argv index. */

static char *scan = NULL; /* Private scan pointer. */

int getopt(int argc, char * const argv[], const char* optstring)

{

 char c;

 char *posn;

 optarg = NULL;

 if (scan == NULL || *scan == ’\0’) {

 if (optind == 0)

 optind++;

 if (optind >= argc || argv[optind][0] != ’-’ || argv[optind][1] == ’\0’)

 return(EOF);

 if (strcmp(argv[optind], "--")==0) {

 optind++;

 return(EOF);

 }
Chapter 10 141

Programming Examples
Using C Over Socket LAN (Windows NT)

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es

 scan = argv[optind]+1;

 optind++;

 }

 c = *scan++;

 posn = strchr(optstring, c); /* DDP */

 if (posn == NULL || c == ’:’) {

 fprintf(stderr, "%s: unknown option -%c\n", argv[0], c);

 return(’?’);

 }

 posn++;

 if (*posn == ’:’) {

 if (*scan != ’\0’) {

 optarg = scan;

 scan = NULL;

 } else {

 optarg = argv[optind];

 optind++;

 }

 }

 return(c);

}

142 Chapter 10

Programming Examples
Using Java Programming Over Socket LAN

P
ro

g
ram

m
in

g
 E

xam
ples
Using Java Programming Over Socket LAN
This Java programming example (ScpiDemo.java) demonstrates simple
socket programming with Java and can be found on the Documentation
CD. It is written in Java programming language, and will compile with
Java compilers versions 1.0 and above.

Example:

import java.awt.*;

import java.io.*;

import java.net.*;

import java.applet.*;

// This is a SCPI Demo to demonstrate how one can communicate with the

// E4440A PSA with a JAVA capable browser. This is the

// Main class for the SCPI Demo. This applet will need Socks.class to

// support the I/O commands and a ScpiDemo.html for a browser to load

// the applet.

// To use this applet, either compile this applet with a Java compiler

// or use the existing compiled classes. copy ScpiDemo.class,

// Socks.class and ScpiDemo.html to a floppy. Insert the floppy into

// your instrument. Load up a browser on your computer and do the

// following:

// 1. Load this URL in your browser:

// ftp://<Your instrument’s IP address or name>/int/ScpiDemo.html

// 2. There should be two text windows show up in the browser:

// The top one is the SCPI response text area for any response

// coming back from the instrument. The bottom one is for you

// to enter a SCPI command. Type in a SCPI command and hit enter.

// If the command expects a response, it will show up in the top

// window.

public class ScpiDemo extends java.applet.Applet implements Runnable {

 Thread responseThread;

 Socks sck;

 URL appletBase;

 TextField scpiCommand = new TextField();
Chapter 10 143

Programming Examples
Using Java Programming Over Socket LAN

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 TextArea scpiResponse = new TextArea(10, 60);

 Panel southPanel = new Panel();

 Panel p;

 // Initialize the applets

 public void init() {

 SetupSockets();

 SetupPanels();

 // Set up font type for both panels

 Font font = new Font("TimesRoman", Font.BOLD,14);

 scpiResponse.setFont(font);

 scpiCommand.setFont(font);

 scpiResponse.appendText("SCPI Demo Program: Response messages\n");

 scpiResponse.appendText("--\n");

 }

 // This routine is called whenever the applet is actived

 public void start() {

 // Open the sockets if not already opened

 sck.OpenSockets();

 // Start a response thread

 StartResponseThread(true);

 }

 // This routine is called whenever the applet is out of scope

 // i.e. minize browser

 public void stop() {

 // Close all local sockets

 sck.CloseSockets();

 // Kill the response thread

 StartResponseThread(false);

 }

 // Action for sending out scpi commands
144 Chapter 10

Programming Examples
Using Java Programming Over Socket LAN

P
ro

g
ram

m
in

g
 E

xam
ples
 // This routine is called whenever a command is received from the

 // SCPI command panel.

 public boolean action(Event evt, Object what) {

 // If this is the correct target

 if (evt.target == scpiCommand) {

 // Get the scpi command

 String str = scpiCommand.getText();

 // Send it out to the Scpi socket

 sck.ScpiWriteLine(str);

 String tempStr = str.toLowerCase();

 // If command str is "syst:err?", don’t need to send another one.

 if ((tempStr.indexOf("syst") == -1) ||

 (tempStr.indexOf("err") == -1)) {

 // Query for any error

 sck.ScpiWriteLine("syst:err?");

 }

 return true;

 }

 return false;

 }

 // Start/Stop a Response thread to display the response strings

 private void StartResponseThread(boolean start) {

 if (start) {

 // Start a response thread

 responseThread = new Thread(this);

 responseThread.start();

 }

 else {

 // Kill the response thread

 responseThread = null;

 }

 }

 // Response thread running

 public void run() {
Chapter 10 145

Programming Examples
Using Java Programming Over Socket LAN

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 String str = ""; // Initialize str to null

 // Clear the error queue before starting the thread

 // in case if there’s any error messages from the previous actions

 while (str.indexOf("No error") == -1) {

 sck.ScpiWriteLine("syst:err?");

 str = sck.ScpiReadLine();

 }

 // Start receiving response or error messages

 while(true) {

 str = sck.ScpiReadLine();

 if (str != null) {

 // If response messages is "No error", do no display it,

 // replace it with "OK" instead.

 if (str.equals("+0,\"No error\"")) {

 str = "OK";

 }

 // Display any response messages in the Response panel

 scpiResponse.appendText(str+"\n");

 }

 }

 }

 // Set up and open the SCPI sockets

 private void SetupSockets() {

 // Get server url

 appletBase = (URL)getCodeBase();

 // Open the sockets

 sck = new Socks(appletBase);

 }

 // Set up the SCPI command and response panels

 private void SetupPanels() {

 // Set up SCPI command panel

 southPanel.setLayout(new GridLayout(1, 1));
146 Chapter 10

Programming Examples
Using Java Programming Over Socket LAN

P
ro

g
ram

m
in

g
 E

xam
ples
 p = new Panel();

 p.setLayout(new BorderLayout());

 p.add("West", new Label("SCPI command:"));

 p.add("Center", scpiCommand);

 southPanel.add(p);

 // Set up the Response panel

 setLayout(new BorderLayout(2,2));

 add("Center", scpiResponse);

 add("South", southPanel);

 }

}

// Socks class is responsible for open/close/read/write operations

// from the predefined socket ports. For this example program,

// the only port used is 5025 for the SCPI port.

class Socks extends java.applet.Applet {

 // Socket Info

 // To add a new socket, add a constant here, change MAX_NUM_OF_SOCKETS

 // then, edit the constructor for the new socket.

 public final int SCPI=0;

 private final int MAX_NUM_OF_SOCKETS=1;

 // Port number

 // 5025 is the dedicated port number for E4440A Scpi Port

 private final int SCPI_PORT = 5025;

 // Socket info

 private URL appletBase;

 private Socket[] sock = new Socket[MAX_NUM_OF_SOCKETS];

 private DataInputStream[] sockIn = new DataInputStream[MAX_NUM_OF_SOCKETS];

 private PrintStream[] sockOut = new PrintStream[MAX_NUM_OF_SOCKETS];

 private int[] port = new int[MAX_NUM_OF_SOCKETS];

 private boolean[] sockOpen = new boolean[MAX_NUM_OF_SOCKETS];
Chapter 10 147

Programming Examples
Using Java Programming Over Socket LAN

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 // Constructor

 Socks(URL appletB)

 {

 appletBase = appletB;

 // Set up for port array.

 port[SCPI] = SCPI_PORT;

 // Initialize the sock array

 for (int i = 0; i < MAX_NUM_OF_SOCKETS; i++) {

 sock[i] = null;

 sockIn[i] = null;

 sockOut[i] = null;

 sockOpen[i] = false;

 }

 }

 //***** Sockects open/close routines

 // Open the socket(s) if not already opened

 public void OpenSockets()

 {

 try {

 // Open each socket if possible

 for (int i = 0; i < MAX_NUM_OF_SOCKETS; i++) {

 if (!sockOpen[i]) {

 sock[i] = new Socket(appletBase.getHost(),port[i]);

 sockIn[i] = new DataInputStream(sock[i].getInputStream());

 sockOut[i] = new PrintStream(sock[i].getOutputStream());

 if ((sock[i] != null) && (sockIn[i] != null) &&

 (sockOut[i] != null)) {

 sockOpen[i] = true;

 }

 }

 }

 }
148 Chapter 10

Programming Examples
Using Java Programming Over Socket LAN

P
ro

g
ram

m
in

g
 E

xam
ples
 catch (IOException e) {

 System.out.println("Sock, Open Error "+e.getMessage());

 }

 }

 // Close the socket(s) if opened

 public void CloseSocket(int s)

 {

 try {

 if (sockOpen[s] == true) {

 // write blank line to exit servers elegantly

 sockOut[s].println();

 sockOut[s].flush();

 sockIn[s].close();

 sockOut[s].close();

 sock[s].close();

 sockOpen[s] = false;

 }

 }

 catch (IOException e) {

 System.out.println("Sock, Close Error "+e.getMessage());

 }

 }

 // Close all sockets

 public void CloseSockets()

 {

 for (int i=0; i < MAX_NUM_OF_SOCKETS; i++) {

 CloseSocket(i);

 }

 }

 // Return the status of the socket, open or close.

 public boolean SockOpen(int s)

 {

 return sockOpen[s];
Chapter 10 149

Programming Examples
Using Java Programming Over Socket LAN

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 }

 //************* Socket I/O routines.

 //*** I/O routines for SCPI socket

 // Write an ASCII string with carriage return to SCPI socket

 public void ScpiWriteLine(String command)

 {

 if (SockOpen(SCPI)) {

 sockOut[SCPI].println(command);

 sockOut[SCPI].flush();

 }

 }

 // Read an ASCII string, terminated with carriage return from SCPI socket

 public String ScpiReadLine()

 {

 try {

 if (SockOpen(SCPI)) {

 return sockIn[SCPI].readLine();

 }

 }

 catch (IOException e) {

 System.out.println("Scpi Read Line Error "+e.getMessage());

 }

 return null;

 }

 // Read a byte from SCPI socket

 public byte ScpiReadByte()

 {

 try {

 if (SockOpen(SCPI)) {

 return sockIn[SCPI].readByte();
150 Chapter 10

Programming Examples
Using Java Programming Over Socket LAN

P
ro

g
ram

m
in

g
 E

xam
ples
 }

 }

 catch (IOException e) {

 System.out.println("Scpi Read Byte Error "+e.getMessage());

 }

 return 0;

 }

}

Chapter 10 151

Programming Examples
Using the VXI Plug-N-Play Driver in LabVIEW®

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
Using the VXI Plug-N-Play Driver in
LabVIEW®

This example shows how to use the VXI plug and play driver over LAN
in LabVIEW 6. The vi file (lan_pnp.vi) can be found on the
Documentation CD.

You must have Version K of the Agilent IO libraries installed on your
PC, either alone or installed side-by-side with the National Instruments
IO libraries. Also, you must first import the VXI plug and play driver
into LabVIEW before running this example. The instrument drivers are
available at:

http://www.agilent.com/find/iolib (Click on instrument drivers.)

This example:

1. Opens a VXI 11.3 Lan connection to the instrument

2. Sets the Center Frequency to 1 GHz

3. Queries the instrument’s center frequency

4. Closes the Lan connection to the instrument

NOTE Substitute your instruments I.P. address for the one used in the
example.

Example:
152 Chapter 10

Programming Examples
Using LabVIEW® 6 to Make an EDGE GSM Measurement

P
ro

g
ram

m
in

g
 E

xam
ples
Using LabVIEW® 6 to Make an EDGE GSM
Measurement
This is a LabVIEW 6 example that uses SCPI commands instead of the
instrument driver. It demonstrates reading ASCII trace points of entire
EDGE waveform data in the Power Vs. Time measurement over LAN.
This program uses the optional GSM/EDGE personality in the PSA
Series Spectrum Analyzers and in the E4406A Vector Signal Analyzer.
The vi file (epvt.vi) can be found on the Documentation CD.

This example:

1. Opens a VXI 11.3 Lan connection to the instrument

2. Changes the data format to ASCII.

3. Initiates a power vs. time measurement and reads the results.

4. The comma separated ASCII results string is converted to an array
of values.

Example:
Chapter 10 153

Programming Examples
Using LabVIEW® 6 to Make an EDGE GSM Measurement

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
154 Chapter 10

Programming Examples
Using LabVIEW® 6 to Make an EDGE GSM Measurement

P
ro

g
ram

m
in

g
 E

xam
ples
Chapter 10 155

Programming Examples
Using Visual Basic® 6 to Capture a Screen Image

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
Using Visual Basic® 6 to Capture a Screen
Image
This is a Visual Basic example that stores the current screen image on
your PC. The program works with the ESA or PSA Series spectrum
analyzers. The bas file (screen.bas) and a compiled executable
(screen.exe) can be found on the Documentation CD.

This example:

1. Stores the current screen image on the instrument’s flash as
C:PICTURE.GIF.

2. Transfers the image over GPIB or LAN and stores it on your PC in
the current directory as picture.gif.

3. The file C:PICTURE.GIF is then deleted from the instrument’s
flash.

NOTE This example uses GPIB address 18 for the spectrum analyzer.

’’ """

’’ Copyright (c) 1999- 2003 Agilent Technologies Inc. All rights reserved.

’’

’’ You have a royalty-free right to use, modify, reproduce and distribute

’’ the Sample Application Files (and/or any modified version) in any way

’’ you find useful, provided that you agree that Agilent Technologies has

’’ no warranty, obligations or liability for any Sample Application Files.

’’

’’ Agilent Technologies provides programming examples for illustration only,

’’ This sample program assumes that you are familiar with the programming

’’ language being demonstrated and the tools used to create and debug

’’ procedures. Agilent Technologies support engineers can help explain the

’’ functionality of Agilent Technologies software components and associated

’’ commands, but they will not modify these samples to provide added

’’ functionality or construct procedures to meet your specific needs.

’’ ""

’’ To develop VISA applications in Microsoft Visual Basic, you first need

’’ to add the Visual Basic (VB) declaration file in your VB project as a

’’ Module. This file contains the VISA function definitions and constant
156 Chapter 10

Programming Examples
Using Visual Basic® 6 to Capture a Screen Image

P
ro

g
ram

m
in

g
 E

xam
ples
’’ declarations needed to make VISA calls from Visual Basic.

’’ To add this module to your project in VB 6, from the menu, select

’’ Project->Add Module, select the ’Existing’ tab, and browse to the

’’ directory containing the VB Declaration file, select visa32.bas, and

’’ press ’Open’.

’’

’’ The name and location of the VB declaration file depends on which

’’ operating system you are using. Assuming the ’standard’ VISA directory

’’ of C:\Program Files\VISA or the ’standard’ VXIpnp directory of

’’ C:\VXIpnp, the visa32.bas file can be located in one of the following:

’’

’’ \winnt\agvisa\include\visa32.bas - Windows NT/2000/XP

’’ \winnt\include\visa32.bas - Windows NT/2000/XP

’’ \win95\include\visa32.bas - Windows 95/98/Me

’’

’ screen.bas

’ The following example program is written for the PSA and ESA Series

’ Spectrum Analyzers. It stores the current screen image on the

’ instrument’s flash as C:PICTURE.GIF. It then transfers the image over

’ GPIB or LAN and stores the image on your PC in the current directory

’ as picture.gif. The file C:PICTURE.GIF is then deleted on the

’ instrument’s flash.

’’

Option Explicit

Private Sub Main()

 ’ Declare Variables used in the program

 Dim status As Long ’VISA function status return code

 Dim defrm As Long ’Session to Default Resource Manager

 Dim vi As Long ’Session to instrument

 Dim x As Integer ’Loop Variable

 Dim ArrayPtr(1) As Long ’Array of Pointers

 Dim ResultsArray(50000) As Byte ’results array, Big enough to hold a GIF

 Dim length As Long ’Number of bytes returned from instrument

 Dim fnum As Integer ’File Number to used to open file to store data

 Dim isOpen As Boolean ’Boolean flag used to keep track of open file
Chapter 10 157

Programming Examples
Using Visual Basic® 6 to Capture a Screen Image

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 Dim headerlength As Long ’length of header

 ’Set the default number of bytes that will be contained in the

 ’ResultsArray to 50,000 (50kB)

 length = 50000

 ’Set the array of pointers to the addresses of the variables

 ArrayPtr(0) = VarPtr(length)

 ArrayPtr(1) = VarPtr(ResultsArray(0))

 ’Delete picture.gif file if it exists

 On Error Resume Next

 Kill "picture.gif"

 On Error GoTo Error_Handler

 ’ Open the default resource manager session

 status = viOpenDefaultRM(defrm)

 ’ Open the session. Note: For PSA, to use LAN, change the string to

 ’ "TCPIP0::xxx.xxx.xxx.xxx::inst0::INSTR" where xxxxx is the IP address

 status = viOpen(defrm, "GPIB0::18::INSTR", 0, 0, vi)

 If (status < 0) Then GoTo VisaErrorHandler

 ’ Set the I/O timeout to fifteen seconds

 status = viSetAttribute(vi, VI_ATTR_TMO_VALUE, 15000)

 If (status < 0) Then GoTo VisaErrorHandler

 ’Store the current screen image on flash as C:PICTURE.GIF

 status = viVPrintf(vi, ":MMEM:STOR:SCR ’C:PICTURE.GIF’" + Chr$(10), 0)

 If (status < 0) Then GoTo VisaErrorHandler

 ’Grab the screen image file from the instrument

 status = viVQueryf(vi, ":MMEM:DATA? ’C:PICTURE.GIF’" + Chr$(10), _

 "%#y", ArrayPtr(0))

158 Chapter 10

Programming Examples
Using Visual Basic® 6 to Capture a Screen Image

P
ro

g
ram

m
in

g
 E

xam
ples
 ’Delete the tempory file on the flash named C:PICTURE.GIF

 status = viVPrintf(vi, ":MMEM:DEL ’C:PICTURE.GIF’" + Chr$(10), 0)

 If (status < 0) Then GoTo VisaErrorHandler

 ’Close the vi session and the resource manager session

 Call viClose(vi)

 Call viClose(defrm)

 ’Store the results in a text file

 fnum = FreeFile() ’Get the next free file number

 Open "picture.gif" For Binary As #fnum

 isOpen = True

 headerlength = 2 + (Chr$(ResultsArray(1)))

 For x = headerlength To length - 2

 Put #fnum, , ResultsArray(x)

 Next x

 ’ Intentionally flow into Error Handler to close file

Error_Handler:

 ’ Raise the error (if any), but first close the file

 If isOpen Then Close #fnum

 If Err Then Err.Raise Err.Number, , Err.Description

 Exit Sub

VisaErrorHandler:

 Dim strVisaErr As String * 200

 Call viStatusDesc(defrm, status, strVisaErr)

 MsgBox "*** Error : " & strVisaErr, vbExclamation, "VISA Error Message"

 Exit Sub

End Sub
Chapter 10 159

Programming Examples
Using Visual Basic® 6 to Transfer Binary Trace Data

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
Using Visual Basic® 6 to Transfer Binary Trace
Data
This is a Visual Basic example that gets binary trace data from the
instrument. Binary data transfers are faster than the default ASCII
transfer mode, because less data is sent over the bus. This example
works with the ESA or PSA Series spectrum analyzers. The bas file
(bintrace.bas) and a compiled executable (bintrace.exe) can be found on
the Documentation CD.

This example:

1. Queries the IDN (identification) string from the instrument.

2. While in Spectrum Analysis mode, it reads the trace data in binary

format (Real,32 or Real,64 or Int,32).

3. Stores the data is then to a file "bintrace.txt".

NOTE This example uses GPIB address 18 for the spectrum analyzer.

’’ """

’’ Copyright (c) 1999- 2003 Agilent Technologies Inc. All rights reserved.

’’

’’ You have a royalty-free right to use, modify, reproduce and distribute

’’ the Sample Application Files (and/or any modified version) in any way

’’ you find useful, provided that you agree that Agilent Technologies has

’’ no warranty, obligations or liability for any Sample Application Files.

’’

’’ Agilent Technologies provides programming examples for illustration only,

’’ This sample program assumes that you are familiar with the programming

’’ language being demonstrated and the tools used to create and debug

’’ procedures. Agilent Technologies support engineers can help explain the

’’ functionality of Agilent Technologies software components and associated

’’ commands, but they will not modify these samples to provide added

’’ functionality or construct procedures to meet your specific needs.

’’ ""

’’ To develop VISA applications in Microsoft Visual Basic, you first need

’’ to add the Visual Basic (VB) declaration file in your VB project as a

’’ Module. This file contains the VISA function definitions and constant
160 Chapter 10

Programming Examples
Using Visual Basic® 6 to Transfer Binary Trace Data

P
ro

g
ram

m
in

g
 E

xam
ples
’’ declarations needed to make VISA calls from Visual Basic.

’’ To add this module to your project in VB 6, from the menu, select

’’ Project->Add Module, select the ’Existing’ tab, and browse to the

’’ directory containing the VB Declaration file, select visa32.bas, and

’’ press ’Open’.

’’

’’ The name and location of the VB declaration file depends on which

’’ operating system you are using. Assuming the ’standard’ VISA directory

’’ of C:\Program Files\VISA or the ’standard’ VXIpnp directory of

’’ C:\VXIpnp, the visa32.bas file can be located in one of the following:

’’

’’ \winnt\agvisa\include\visa32.bas - Windows NT/2000/XP

’’ \winnt\include\visa32.bas - Windows NT/2000/XP

’’ \win95\include\visa32.bas - Windows 95/98/Me

’’

’ bintrace.bas

’ The following example program is written for the PSA and ESA Series

’ Spectrum Analyzers. It queries the IDN string from the instrument

’ and then reads the trace data in Spectrum Analysis mode in binary

’ format (Real,32 or Real,64 or Int,32). The data is then stored to a

’ file "bintrace.txt".

’ Binary transfers are faster than the default ASCII transfer mode,

’ because less data is sent over the bus.

’’

Option Explicit

Private Sub Main()

 ’ Declare Variables used in the program

 Dim status As Long ’VISA function status return code

 Dim defrm As Long ’Session to Default Resource Manager

 Dim vi As Long ’Session to instrument

 Dim strRes As String * 100 ’Fixed length string to hold *IDN? Results

 Dim x As Integer ’Loop Variable

 Dim output As String ’output string variable

 Dim ArrayPtr(1) As Long ’Array of Pointers
Chapter 10 161

Programming Examples
Using Visual Basic® 6 to Transfer Binary Trace Data

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 Dim ResultsArray(8192) As Single ’trace element array of Real,32 values

 ’For Real,64 data use Double. For Int,32 data use Long

 Dim length As Long ’Number of trace elements return from instrument

 Dim fnum As Integer ’File Number to used to open file to store data

 Dim isOpen As Boolean ’Boolean flag used to keep track of open file

 ’Set the default number of trace elements to the ResultsArray size

 ’Note: PSA and ESA currently support up to 8192 trace points

 length = 8192

 ’Set the array of pointers to the addresses of the variables

 ArrayPtr(0) = VarPtr(length)

 ArrayPtr(1) = VarPtr(ResultsArray(0))

 On Error GoTo Error_Handler

 ’ Open the default resource manager session

 status = viOpenDefaultRM(defrm)

 ’ Open the session. Note: For PSA, to use LAN, change the string to

 ’ "TCPIP0::xxx.xxx.xxx.xxx::inst0::INTSR" where xxxxx is the IP address

 status = viOpen(defrm, "GPIB0::18::INSTR", 0, 0, vi)

 If (status < 0) Then GoTo VisaErrorHandler

 ’ Set the I/O timeout to five seconds

 status = viSetAttribute(vi, VI_ATTR_TMO_VALUE, 5000)

 If (status < 0) Then GoTo VisaErrorHandler

 ’Ask for the devices’s *IDN string.

 status = viVPrintf(vi, "*IDN?" + Chr$(10), 0)

 If (status < 0) Then GoTo VisaErrorHandler

 ’Read back the IDN string from the instrument

 status = viVScanf(vi, "%t", strRes)

 If (status < 0) Then GoTo VisaErrorHandler

162 Chapter 10

Programming Examples
Using Visual Basic® 6 to Transfer Binary Trace Data

P
ro

g
ram

m
in

g
 E

xam
ples
 ’Print the IDN string results in a message box

 MsgBox (strRes)

 ’Change the instrument mode to Spectrum Analysis

 status = viVPrintf(vi, ":INST:NSEL 1" + Chr$(10), 0)

 If (status < 0) Then GoTo VisaErrorHandler

 ’ Set instrument trace data format to 32-bit Real

 ’ Note: For higher precision use 64-bit data, ":FORM REAL,64"

 ’ For faster data transfer for ESA, use ":FORM INT,32"

 status = viVPrintf(vi, ":FORM REAL,32" + Chr$(10), 0)

 If (status < 0) Then GoTo VisaErrorHandler

 ’Set Analyzer to single sweep mode

 status = viVPrintf(vi, ":INIT:CONT 0" + Chr$(10), 0)

 If (status < 0) Then GoTo VisaErrorHandler

 ’Trigger a sweep and wait for sweep to complete

 status = viVPrintf(vi, ":INIT:IMM;*WAI" + Chr$(10), 0)

 If (status < 0) Then GoTo VisaErrorHandler

 ’Query the trace data from the instrument

 ’Note: Change the "%#zb" to "%#Zb" for Real,64 data

 ’ For Int,32 leave the modifier as "%#zb"

 status = viVQueryf(vi, ":TRAC:DATA? TRACE1" + Chr$(10), _

 "%#zb", ArrayPtr(0))

 ’Close the vi session and the resource manager session

 Call viClose(vi)

 Call viClose(defrm)

 ’Print number of elements returned

 MsgBox ("Number of trace elements returned = " & length)

 ’Create a string from the ResultsArray to output to a file

 For x = 0 To length - 1
Chapter 10 163

Programming Examples
Using Visual Basic® 6 to Transfer Binary Trace Data

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 output = output & ResultsArray(x) & vbCrLf

 Next x

 ’Print Results to the Screen

 MsgBox (output)

 ’Store the results in a text file

 fnum = FreeFile() ’Get the next free file number

 Open "bintrace.txt" For Output As #fnum

 isOpen = True

 Print #fnum, output

 ’ Intentionally flow into Error Handler to close file

Error_Handler:

 ’ Raise the error (if any), but first close the file

 If isOpen Then Close #fnum

 If Err Then Err.Raise Err.Number, , Err.Description

 Exit Sub

VisaErrorHandler:

 Dim strVisaErr As String * 200

 Call viStatusDesc(defrm, status, strVisaErr)

 MsgBox "*** Error : " & strVisaErr, vbExclamation, "VISA Error Message"

 Exit Sub

End Sub
164 Chapter 10

Programming Examples
Using Visual Basic® .NET with the IVI-Com Driver

P
ro

g
ram

m
in

g
 E

xam
ples
Using Visual Basic® .NET with the IVI-Com
Driver
This example uses Visual Basic .NET with the IVI-Com driver. It makes
a time domain (Waveform) measurement using the Basic mode. Basic
mode is standard in the E4406A Vector Signal Analyzer and is optional
(B7J) in the PSA Series Spectrum Analyzers. The vb file
(vbivicomsa_basicwaveform.vb) and the compiled executable file
(vbivicomsa.exe) can be found on the Documentation CD.

’***

’ VBIviComSA_BasicWaveform.vb, August 5, 2003

’ This example demonstrates the use of the IVI-COM driver in VB.NET

’ through an interop assembly. The Raw I/Q trace data from the Waveform

’ measurement in Basic Mode is queried and printed to the screen.

’

’ Requirements:

’ 1) E4406A or PSA Series Spectrum Analyzer with Option B7J

’ 2) Latest AgilentSa IVI-COM driver

’ You may download it here: http://www.agilent.com/find/inst_drivers

’ This example was tested with version 2.1.0.0 of the driver

’ 3) Create a new project and add the References to this module

’ and to the the IVI-COM driver dlls:

’ For .NET, right click on Reference, choose Add Reference

’ and then click on Browse and directly link the DLLs in the directory:

’ C:\Program Files\IVI\Bin\Primary Interop Assemblies

’ Agilent.AgilentSa.Interop.dll

’ Agilent.AgilentSaAppBasic.Interop.dll

’ Agilent.Itl.Interop

’ IviDriverLib.dll

’ IviSpecAnLib.dll

’

’ THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY

’ KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE

’ IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A

’ PARTICULAR PURPOSE.

’

Chapter 10 165

Programming Examples
Using Visual Basic® .NET with the IVI-Com Driver

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
’ Copyright (c) 2003. Agilent Technologies, Inc.

’***

Option Strict On

Imports Agilent.TMFramework

Imports Agilent.AgilentSa.Interop

Imports Ivi.Driver.Interop

Imports System.Runtime.InteropServices

Module ConsoleApp

 Sub Main()

 ’ Prompt the user for the address of the instrument

 Dim address As String

 Console.WriteLine("Enter address of the instrument " & vbCrLf & _

 "(ex: GPIB0::18::INSTR or TCPIP0::192.168.100.2::inst0::INSTR):")

 address = Console.ReadLine()

 Try

 ’ Create an instance of the driver, connection to the instrument

 ’ is not established here, it is done by calling Initialize

 Dim instr As New AgilentSaClass()

 ’ Establish the connection to the instrument

 ’ Last parameter (DriverSetup) is optional, VB could omit it (but not C#)

 ’ Important: Close must be called to release resources used by the driver

 instr.Initialize(address, False, False, "")

 Try

 ’ INHERENT CAPABILITIES

 ’ Note that it is not necessary to program against the IIviDriver

 ’ interface, the same can be achieved by using the class directly

 ’ Using the IIviDriver interface gives us interchangeable code

 Dim inherent As IIviDriver = instr
166 Chapter 10

Programming Examples
Using Visual Basic® .NET with the IVI-Com Driver

P
ro

g
ram

m
in

g
 E

xam
ples
 Dim manufacturer As String

 Dim model As String

 Dim firmware As String

 manufacturer = inherent.Identity.InstrumentManufacturer

 model = inherent.Identity.InstrumentModel

 firmware = inherent.Identity.InstrumentFirmwareRevision

 ’ Output instrument information to the console

 Console.WriteLine("Manufacturer: " + manufacturer)

 Console.WriteLine("Model: " + model)

 Console.WriteLine("Firmware: " + firmware)

 ’ Reset the instrument

 inherent.Utility.Reset()

 ’ INSTRUMENT SPECIFIC

 ’ Using the IAgilentSa interface is not necessary or beneficial

 ’ at the moment, but in the future if other instruments implement

 ’ the IAgilentSa interface, the code that is written to work with

 ’ that interface can be reused without changes, as opposed to code

 ’ that is written against the class object directly

 Dim sa As IAgilentSa = instr

 ’ Obtain trace data from the instrument

 Dim traceData As Array

 sa.Application.Select("Basic")

 ’sa.Application.Basic.Waveform.Configure()

 sa.Application.Basic.Spectrum.Traces.Initiate()

 traceData = sa.Application.Basic.Waveform.Traces.Item("RawIQ").Read(10000)

 ’ Output the trace data to the console

 Console.WriteLine("Press ENTER to display trace data.")

 Console.ReadLine()

 Dim traceValue As Double

 For Each traceValue In traceData

 Console.WriteLine(traceValue)
Chapter 10 167

Programming Examples
Using Visual Basic® .NET with the IVI-Com Driver

P
ro

g
ra

m
m

in
g

 E
xa

m
pl

es
 Next

 Catch ex As Exception

 Console.WriteLine(ex.Message)

 Finally

 ’ Close the connection

 instr.Close()

 End Try

 Catch ex As COMException

 Console.WriteLine(ex.Message)

 Catch ex As Exception

 Console.WriteLine(ex.Message)

 End Try

 ’ Wait for user input

 Console.WriteLine("Press ENTER to end program.")

 Console.ReadLine()

 End Sub

End Module
168 Chapter 10

Index
In

d
ex
Numerics
10 MHz output, turning on 16

A
ACP power measurements 70
ACPR

programming example 97
Agilent Technologies URL 2
alignments

programming example 100
analyzer

distortion 45
functions, basic 6
functions, detailed 6

attenuation
input, reducing 23
optimal power at mixer, setting

49
setting automatically 23
setting manually 23

averaging
description 22
types 27

averaging, log 26

B
binary trace data, programming

example 103
bursted signal power

measurements 63

C
C programming, socket LAN 107,

120, 140
CALC

DATA
COMP? programming

example 114
calibration

programming example 100
CCDF statistical power

measurements 67
center frequency

adjusting 20
moving signal to 23
step size, setting with marker 20

clear-write mode, using 41
communication systems,

distortion in 44
compressing measurement data,

programming example 114

D
data

comparing two traces 46

delta marker
comparing two traces 46
using 16, 18

detectors, average 26
digital signal power

measurements
ACP 70
burst signals 63
CCDF 67
MCP 74
overview 62

directories
creating 7
deleting all on floppy 9
documentation assumptions 7

disk
deleting all files and directories

(floppy) 9
deleting one file 8

display image capture program
example 156, 160

distortion measurements
analyzer products 45
harmonic 49
overview 44
TOI products 47

documentation
assumptions, file knowledge 7
assumptions, preset 6
basic operation 6
function details 6

dynamic range graph 50

E
EDGE/GSM program example

153, 165
example

ACPR measurement 97
alignment 100
saving instrument state 93
saving trace data 103
using markers 90

examples
100 kHz separation, resolving

32
average detector, using 26
averaging, trace 27
comparing signals, overview 14
distortion

from analyzer 45
harmonic 49
overview 44
TOI 47

harmonic distortion 49
harmonics, measuring 49
input attenuation, reducing 23
noise

at single frequency 55
overview 54
signal-to-noise 57
total power 58

power of digital signals
ACP 70
burst signals 63
CCDF 67
MCP 74
overview 62

resolution bandwidth, reducing
25

signals
equal-amplitude, separating

32
low-level, overview 22
off-screen, comparing 15, 20
on-screen, comparing 14, 16,

18
separating 32
small, separating from larger

34
tracking 39
tracking, overview 38

source stability, measuring 41
trace averaging 27

F
files

copying 11
deleting all on floppy 9
deleting one 8
documentation assumptions 7
loading 10
renaming 10

floppy disk
deleting all files and directories

9
deleting one file 8

frequency
center frequency, adjusting 20
center step size, setting 20

G
graph, dynamic range 50
GSM/EDGE program example

153, 165

H
harmonic distortion

measuring low-level signals 15
harmonics

distortion example 49
measuring 49

harmonics, measuring 49
 169

Index
In

d
ex
I
input attenuation, reducing 23
instrument states

programming example 93
intermodulation distortion,

third-order 47

J
Java program example 143

L
LabView program example 152,

153, 165
LAN

C program
example 120

C program example 107, 140
Java program example 143

log averaging 26
low-level signals

harmonics, measuring 15
input attenuation, reducing 23
resolution bandwidth, reducing

25
sweep time, reducing 26
trace averaging 27

M
markers

center frequency step, setting 20
center frequency, moving to 23
comparing two traces 46
delta marker

constant-level signals 16
harmonic distortion products

46
varying-level signals 18

delta pair, using 18
marker delta, using 16
peak search, using 23
programming example 90
reference annotation, reading 20
turning off 16, 19

maximum hold, using 41
MCP power measurements 74
measurement

programming example 97
measurements

comparing signals, overview 14
digital signal power

overview 62
distortion

from analyzer 45
harmonic 49
overview 44
TOI 47

harmonics 49
noise

at single frequency 55
overview 54
total power 58

power of digital signals
ACP 70
burst signals 63
CCDF 67
MCP 74

separating signals (equal
amplitude) 32

separating signals (unequal
amplitude) 34

signal-to-noise 57
source stability 41
tracking signals

overview 38
procedure 39

two signals (not same screen) 20
two signals (same screen) 16, 18

mixer input level, setting 48

N
noise measurements

at single frequency 55
overview 54
signal-to-noise 57
sweep time, reducing 26
total power 58

O
openSocket 107, 120, 140
operation, basics 6
operation, details 6
output (10 MHz), turning on 16
overviews

comparing two signals 14
distortion 44
low-level signal 22
noise 54
power of digital signals 62
resolving signals 30
stability 38

P
peak search programming

example 90
peak search, using 16, 23
Plug-N-Play driver program

example 152
power measurements of digital

signals
ACP 70
burst signals 63
CCDF 67

MCP 74
power of digital signal

measurements
overview 62

preset, assumption in
documentation 6

program example
C 107, 120, 140
EDGE/GSM 153, 165
Java 143
LabView 152, 153, 165
screen image capture 156, 160
socket LAN 107, 120, 140, 143
Visual Basic 156, 160
VXI Plug-N-Play driver 152

programming example
ACPR measurement 97
alignments 100
saving instrument state 93
saving trace data 103
using CALC

DATA
COMP? 114

using markers 90

R
RBW selections 25
reducing measurement data,

programming example 114
resolution bandwidth

adjusting 25
effects of narrow 49
setting 48

S
sample program

ACPR measurement 97
alignment 100
saving instrument state 93
saving trace data 103
using markers 90

saving trace data programming
example 103

screen image capture program
example 156, 160

signal track, turning on 39
signals 39

equal amplitude, separating 32
low-level, overview 22
maximum hold, using 41
off-screen, comparing 15, 20
on-screen, comparing 14, 16, 18
resolving, overview 30
separating, overview 30
small, separating from larger 34
stability, overview 38
170

Index
In

d
ex
signal-to-noise measurement 57
single sweep 16
socket LAN

C program example 107, 120,
140

Java program example 143
states

programming example 93
step size, setting (center

frequency) 20
sweep time and sensitivity trade

off 25
sweep time, changing 26
sweep, single 16

T
TOI distortion

example 47
in non-linear systems 44

trace data programming example
103

traces
clearing 41
comparing two 46
maximum hold 41
selecting 41

U
URL (Agilent Technologies) 2

V
Visual Basic program example

156, 160
VXI Plug-N-Play driver program

example 152
 171

Index
In

d
ex
172

	Measurement Guide & Programming Examples
	Table of Contents
	1� The Basics
	Using Files
	Creating a Directory (or sub-directory)
	Deleting Files
	Loading a File
	Renaming a File
	Copying a File

	2� Comparing Two�Signals: Frequency�and�Amplitude�
	Comparing Signals on the Same Screen
	Signals with Constant Levels (using�Marker�Delta)
	Signals with Varying Levels (using�Delta�Pair)

	Comparing Signals

	3� Measuring a Low-Level Signal
	Reducing Input Attenuation
	Decreasing the Resolution Bandwidth
	Using the Average Detector and Increased�Sweep Time
	Trace Averaging

	4� Resolving Signals
	Separating Equal-Amplitude Signals
	Finding a Small Signal Hidden by a�Larger�Signal

	5� Tracking a Drifting Signal
	Tracking a Signal
	Measuring a Source’s�Drift

	6� Making Distortion�Measurements
	Identifying Distortion from the Analyzer
	Identifying Harmonic Distortion Products
	Measuring the Analyzer’s Third-Order�Intermodulation�Distortion

	Measuring Harmonics and Harmonic�Distortion

	7� Measuring Noise Signals
	Measuring Noise at a Single Frequency
	Measuring Signal-to-Noise Levels
	Measuring Total Noise Power

	8� Measuring the Power of Digital Signals
	Making Power Measurements on Burst Signals
	Making Statistical Power Measurements (CCDF)
	Making Measurements of Adjacent Channel Power (ACP)
	Making Measurements of Multi-Carrier Power (MCP)

	9� Using External Millimeter Mixers (Option AYZ)
	Using Unpreselected Millimeter-wave Mixers
	Entering Conversion-Loss Correction Data
	Setting Mixer Bias

	Using Preselected Millimeter-Wave Mixers
	Frequency Tracking Alignment
	Making a Measurement

	10� Programming Examples
	Examples Included:
	About These Examples
	Finding Additional Examples and More Information

	Using Marker Peak Search
	Example:

	Saving and Recalling Instrument State Data
	Example:

	Making an ACPR Measurement in cdmaOne
	Example:

	Performing Alignments and Getting Pass/Fail Results
	Example:

	Saving Binary Trace Data
	Example:

	Making a Power Calibration for a GSM Mobile Handset
	Example:

	Using the CALCulate:DATA:COMPress? RMS Command
	Example:

	Using C Over Socket LAN (UNIX)
	Example:

	Using C Over Socket LAN (Windows NT)
	Example:

	Using Java Programming Over Socket LAN
	Example:

	Using the VXI Plug-N-Play Driver in LabVIEW®
	Example:

	Using LabVIEW® 6 to Make an EDGE GSM Measurement
	Example:

	Using Visual Basic® 6 to Capture a Screen Image
	Using Visual Basic® 6 to Transfer Binary Trace Data
	Using Visual Basic® .NET with the IVI-Com Driver

	Index

